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Mini-Extreme-Mass-Ratio Inspirals (mini-EMRIs), comprising a sub-solar exotic compact object
(such as a primordial black hole or boson star) orbiting a much heavier stellar-origin or exotic
compact object, represent key targets for ground-based gravitational-wave detectors to probe the
early universe and the nature of dark matter. However, detecting such systems, which could spend
hours to years in LIGO, Virgo and KAGRA data, poses a computational challenge to standard
matched-filtering methods, which has motivated the development of methods that divide the data
into coherent chunks, Fourier transform them, and combine their spectral power or related statistics
incoherently. However, these pipelines typically require that the signal be quasi-monochromatic
within each chunk, which imposes a fundamental limit on the coherence time, since spectral leak-
age becomes significant when the frequency evolution within the chunk becomes comparable to the
frequency resolution. In this work, we extend the development of our method, ΣTrack [1], to the
regime in which the quasi-monochromatic approximation is relaxed, in two ways. First, we estab-
lish an analytical model for the spectral leakage, extending the validity of conventional analyses
beyond the quasi-monochromatic regime. Second, we propose the ΣR statistic—a novel detection
metric formed by a weighted summation of power ratios—which effectively recovers the signal en-
ergy dispersed across adjacent frequency bins. Building on this framework, we further introduce an
innovative frequency-layered search strategy that dynamically optimizes the coherence time across
the observation band. We benchmark our method against a globally optimized Hough transform
pipeline using a fiducial mini-EMRI signal from a binary with masses (1.5, 10−5)M⊙. The results
demonstrate that our framework achieves an order-of-magnitude enhancement in the effective de-
tection volume, significantly expanding the horizon for discovering mini-EMRIs and sub-solar exotic
compact objects with ground-based gravitational wave detectors, which can be similarly applied to
EMRI searches for future space-based gravitational wave detectors.

I. INTRODUCTION

The advent of gravitational-wave (GW) astronomy,
heralded by the first direct detection of a binary black
hole merger [2] and enabled by the global network of in-
terferometric detectors—Advanced LIGO [3], Advanced
Virgo [4], and KAGRA [5]—has provided a pristine
probe into the universe’s most energetic phenomena.
The rapidly expanding catalog of transient events now
encompasses hundreds of compact binary coalescences
(CBCs) [6–9]. While these observations have profoundly
advanced our understanding of compact object forma-
tion, they have simultaneously exposed significant ten-
sions with established astrophysical models. The ob-

∗ wangzixuan243@mails.ucas.ac.cn
† chenxingyu223@mails.ucas.ac.cn
‡ chenggong@ucas.ac.cn
§ guohuaike@ucas.ac.cn
¶ chenju@ucas.ac.cn

∗∗ andrew.miller.ligo@ucas.ac.cn

served population exhibits properties challenging to rec-
oncile with canonical stellar evolution theories [10], rang-
ing from detections within the presumed high-mass gap
[11] to the discovery of enigmatic sources populating the
“lower mass gap”, whose existence obscures the conven-
tional distinction between neutron stars and black holes
[12–15]. These observational puzzles imply the existence
of alternative formation pathways, beyond astrophysical
processes [16–19]. Moreover, a smoking gun evidence for
new physics is the detection of a sub-solar compact ob-
ject, which has received increasingly rising attention in
the community, resulting in many searches for such ob-
jects [20–32]. Popular candidates for the sub-solar exotic
compact objects are primordial black holes [33–37], boson
stars [38], etc, the detection of which can also shed new
light in the understanding of the nature of dark matter.

For binaries consisting of increasingly light sub-solar
exotic compact objects, the gravitational wave signal de-
creases significantly as the chirp mass becomes smaller.
An optimal strategy is to pair a sub-solar exotic compact
object up with a much heavier one (of stellar or compact
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origin) to increase the signal strength, leading to a sytem
with an extreme mass ratio q = mlighter/mprimary ≲
10−5, thus called mini extreme mass ratio inspirals (mini-
EMRIs) [39]. While comparable-mass binaries (q ∼
1) are now routine targets for ground-based detectors
[40, 41] and classical EMRIs involving supermassive black
holes are key objectives for future space-based missions
such as LISA [42–45], Taiji [46–48] and TianQin [49–51],
mini-EMRIs serve as a critical phenomenological bridge.
They offer the unprecedented opportunity to study ex-
treme mass-ratio dynamics within the sensitive frequency
band of terrestrial interferometers, ultimately opening a
novel window into fundamental physics.

The signal phenomenology of a mini-EMRI diverges
fundamentally from that of canonical compact binary co-
alescences (CBCs). In contrast to the fleeting “chirps”
characteristic of stellar-mass mergers, a mini-EMRI tra-
jectory may linger within the detector’s most sensitive
frequency band for timescales spanning days to years.
This “long-transient” character places mini-EMRIs in a
hybrid signal category: they exhibit the deterministic fre-
quency evolution typical of inspiraling binaries, yet pos-
sess the temporal persistence of continuous wave (CW)
sources. This duality imposes severe constraints on stan-
dard data analysis strategies. On one hand, the com-
putational cost of fully coherent matched filtering be-
comes prohibitive due to the rapid expansion of the tem-
plate bank parameter space over such extended durations
[52–56]. On the other hand, conventional CW search
pipelines—optimized for quasi-monochromatic sources
like spinning neutron stars—lack the dynamic range to
accommodate the significant frequency drift inherent to
mini-EMRI dynamics [57–64]. Consequently, the detec-
tion of these sources necessitates the development of spe-
cialized search algorithms designed to efficiently track
rapid phase evolution over long observational baselines.

Analyses of such non-stationary signals typically rely
on the Short-Time Fourier Transform (STFT) as a fun-
damental preprocessing step to track time-frequency evo-
lution. However, a fundamental limitation arises when
the signal frequency evolves significantly within a single
analysis window, inducing spectral leakage that degrades
detection efficiency. Standard STFT-based algorithms,
such as the Hough transform [57, 58], operate under
a “quasi-monochromatic” approximation, assuming the
signal remains effectively monochromatic within a seg-
ment of duration T . This constraint is succinctly quan-
tified by the dimensionless widening factor w = |ḟ |T 2,
which is empirically required to be w ≲ 0.5—implying
that the signal’s frequency drift over the segment du-
ration T is confined to less than half of the frequency
resolution fbin = 1/T . For a long-transient GW signal,
this condition constrains the choice of the coherent time.
While a longer T is desirable for enhancing the signal-
to-noise ratio (SNR) through extended coherent integra-
tion, analysts are compelled to use a short T to satisfy
the approximation. This creates a fundamental trade-off:
maximizing detection sensitivity is sacrificed for model fi-

delity, thus curtailing the reach for more distant or fainter
sources.
This work establishes a theoretical framework to rig-

orously model spectral leakage, thereby enabling the un-
constrained selection of the coherence time T , indepen-
dent of the traditional quasi-monochromatic restriction.
Leveraged by the massive parallelism of modern Graphics
Processing Unit (GPU) architectures [65, 66], which al-
lows computationally intensive approaches to rival the
efficiency of the Hough transform, we build upon the
foundations of the PowerFlux method [67] to introduce a
novel detection statistic, denoted as ΣR. We fully char-
acterize the statistical properties of ΣR, providing a the-
oretical guide for the optimization of search parameters
that effectively resolves the trade-off between coherence
time and spectral leakage loss. Ultimately, our method
achieves an order-of-magnitude improvement in detection
volume compared to the conventional Hough transform
pipeline.
The structure of this paper is as follows. Section II de-

lineates the mini-EMRI signal morphology and the corre-
sponding interferometric detector response. Confronting
the limitations of standard time-frequency analysis, Sec-
tion III develops a rigorous analytical framework within
the STFT domain to precisely model the phenomenon of
spectral leakage. Building on this foundation, Section IV
formally introduces the ΣR statistic, deriving its statisti-
cal properties and establishing analytical metrics for both
the maximum detectable distance and the effective pa-
rameter space volume. Finally, in Section V, we validate
the performance of our algorithm through comprehen-
sive simulations and present a comparative benchmark
against established pipelines.

II. SIGNAL MODEL

As described in [68, 69], the response s(t) of an in-
terferometric gravitational-wave detector to an incoming
signal is a linear combination of the two gravitational-
wave polarizations, h+(t) and h×(t):

s(t) = F+(t)h+(t) + F×(t)h×(t), (1)

where F+(t) and F×(t) are the detector antenna-pattern
functions (they depend on the detector orientation,
source orientation and the source sky location).
The polarization waveforms for a quasi-sinusoidal sig-

nal can be written as

h+(t) = h0(t)
1 + cos2 ι

2
cosΦ(t),

h×(t) = h0(t) cos ι sinΦ(t),

(2)

where h0(t) denotes the intrinsic strain amplitude, Φ(t)
the phase, and ι the inclination angle between the orbital
angular momentum and the line of sight. The intrinsic
amplitude h0(t) is in general a slowly varying function of
time through its dependence on frequency f(t).
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For clarity of the subsequent analysis, it is convenient
to combine the two polarization contributions into a sin-
gle sinusoid:

s(t) = h0(t)Q(t) cos
[
Φ(t) + ϕp(t)

]
, (3)

where the dimensionless modulation factor Q(t) ≥ 0 col-
lects the time-dependent projection of the polarizations
onto the detector:

Q(t) ≡

√
F 2
+(t)

(
1 + cos2 ι

2

)2
+ F 2

×(t) cos
2 ι. (4)

The detector-frame mixing of polarizations also produces
a (slowly varying) polarization phase

ϕp(t) ≡ − arctan

(
2 cos ι F×(t)

(1 + cos2 ι)F+(t)

)
, (5)

chosen so that Eq. (3) reproduces Eq. (1).
In this work we model a mini-EMRI as a compact ob-

ject in a circular, equatorial orbit about a (possibly spin-

ning) central body. Under this assumption the spin-up ḟ
and the instantaneous intrinsic amplitude h0 can be writ-
ten as power-law forms modified by relativistic correction
factors [39, 70]:

ḟ =
96

5
π8/3

(
GMc

c3

)5/3
f11/3 Cf (a, f),

h0(f) =
4

d

(
GMc

c2

)5/3(
πf

c

)2/3
Ch(a, f),

(6)

where Mc = (m1m2)
3/5(m1+m2)

−1/5 is the chirp mass,
d the luminosity distance, and a the dimensionless spin
of the central body.

The correction factors Cf (a, f) and Ch(a, f) encode
relativistic (strong-field) effects introduced by the central
body’s spin and by higher-order post-Newtonian physics.
In the weak-field, large-separation limits Cf → 1 and
Ch → 1, so Eq. (6) reduce to the standard Newtonian
power-law expressions. As the orbit approaches the in-
nermost stable circular orbit (ISCO), these correction
factors depart significantly from unity and capture the
rapid relativistic evolution of both phase and amplitude.

Finally, to obtain the phase as measured in the detec-
tor’s reference frame, we must account for the modulation
induced by the detector’s motion. The dominant effect
is the Doppler shift, which modifies the signal’s instan-
taneous frequency. Integrating this observed frequency
yields the detector-frame phase Φ(t):

Φ(t) = 2π

∫ t

f(t′)

(
1 +

v⃗(t′) · n̂
c

)
dt′ +Φ0, (7)

with Φ0 a reference phase and v⃗(t′) · n̂ represents the
component of the detector’s velocity along the line of
sight to the source. The combination of this phase
model (Eq. (7)) with the amplitude evolution described
by Eqs. (3) and (6) provides the complete time-domain
signal model used to construct the time-frequency tem-
plates in our semi-coherent search.

III. SPECTRAL ANALYSIS

A. Short-time Fourier Transform

The strain data recorded by the interferometer is de-
noted as x(t) and is modeled as the linear superposi-
tion of a deterministic gravitational-wave signal s(t) and
stochastic instrumental noise n(t):

x(t) = s(t) + n(t). (8)

Throughout this article, we approximate the noise com-
ponent n(t) as a stationary, Gaussian random process.
To analyze the time-frequency evolution of the signal,

the discrete data stream is partitioned into overlapping
segments of duration TDFT, each comprising N samples.
A window function, W [n], is applied to each segment
prior to the computation of the Discrete Fourier Trans-
form (DFT) to mitigate spectral leakage at the bound-
aries. We enforce a power-normalization on the window
function, a detailed derivation and discussion of this con-
vention are provided in Appendix C. For the i-th time
segment, the complex-valued STFT coefficient at the k-
th frequency bin is given by:

x̃i[k] =
1

N

N−1∑
n=0

xi[n]W [n]e−i2πnk/N , (9)

where xi[n] denotes the discrete time samples within the
i-th segment. This procedure is standard in CW analy-
ses, e.g. the construction of short FFTs and short fast
Fourier transform databases [60].
To facilitate statistical detection, we define a normal-

ized power-ratio spectrogram, R[i, k], by rescaling the
measured power in each time-frequency bin by the ex-
pected noise power:

R[i, k] ≡ |x̃i[k]|2

⟨|ñi[k]|2⟩
. (10)

Here, the denominator ⟨|ñi[k]|2⟩ represents the estimated
value of the power spectrum of the noise background in
the (i, k)-th bin. In practice, this baseline is estimated
from the data itself using robust averaging techniques,
such as the auto-regressive average spectrum method, to
exclude transient outliers [71].
Under the assumption of stationary Gaussian noise,

the scaled statistic 2R[i, k] follows a non-central chi-
squared distribution with two degrees of freedom:

2R[i, k] ∼ χ2 (2, λ[i, k]) . (11)

The non-centrality parameter λ[i, k] corresponds to the
power SNR for that specific bin, defined as:

λ[i, k] ≡ 2|s̃i[k]|2

⟨|ñi[k]|2⟩
. (12)

Note that the factor of 2 in Eq. (11) and Eq. (12) arises
from the properties of the complex Gaussian distribution
governing the spectrum.
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B. Analytical framework

Adopting the factorization strategy introduced in our
previous work for ΣTrack [1], we decompose the non-
centrality parameter λ[i, k] into two physically distinct
components: a total power term and a normalized spec-
tral shape term:

λ[i, k] =
2Pi

⟨|ñi[k]|2⟩
· |s̃i[k]|

2

Pi
≡ Li · ηi[k]. (13)

The first factor, defined as the total power SNR statistic
Li ≡ 2Pi/⟨|ñi[k]|2⟩, quantifies the signal’s average power
within the i-th segment relative to the noise power in
a single frequency bin. Here, Pi represents the average
power of the signal component after windowing, and a
detailed discussion is in Appendix C.

The second factor, ηi[k] ≡ |s̃i[k]|2/Pi, is designated
as the normalized power spectrum distribution factor—or
equivalently, the spectral leakage factor. This normalized
discrete function characterizes how the total signal power
Pi is partitioned among the discrete frequency bins {k}.
Crucially, ηi[k] is intrinsic to the signal’s frequency evo-
lution and the windowing function, remaining invariant
under changes in the noise background.

To systematically analyze the leakage pattern, it is ad-
vantageous to transition from the absolute frequency in-
dex k to a signal-centric relative coordinate system. We
define the instantaneous central frequency of the signal
in dimensionless units as kc,i ≡ fc,iTDFT. This continu-
ous frequency coordinate is decomposed into an integer
component and a fractional offset:

• The anchor bin, denoted by ⌊kc,i⌉, represents the
integer DFT bin index closest to the true signal
frequency.

• The fractional offset, o0,i ≡ ⌊kc,i⌉ − kc,i, quantifies
the displacement of the anchor bin center relative
to the true frequency, bounded within the interval
o0,i ∈ (−0.5, 0.5).

The relative frequency index κ is then defined as the in-
teger distance from this segment-specific anchor:

κ ≡ k − ⌊kc,i⌉. (14)

In this moving frame, κ = 0 consistently refers to the
peak (anchor) bin, while κ = ±1 denote the immediate
sidebands. The effective offset for any relative bin κ is
given by oκ,i = κ+ o0,i.
Consequently, the discrete leakage factors {ηi[κ]} can

be interpreted as equidistant samples drawn from an un-
derlying continuous spectral leakage function, η(o). The
relationship is expressed as:

ηi[κ] = η(oκ,i) = η(κ+ o0,i). (15)

Here, the initial offset o0,i acts as a “sampling phase”,
dictating the discrete sampling grid along the continuous

function. The temporal variation of the leakage pattern
is thus entirely governed by the evolution of the sam-
pling phase {o0,i}, which is driven by the signal’s intrinsic
chirp.
This decomposition is visualized in Fig. 1. For a di-

rect comparison, we employ the identical signal configu-
ration as in Fig. 8 of Ref. [1]. However, a key distinc-
tion lies in the coherent integration time: guided by the
analysis in Fig. 5, we extend the duration to T = 64 s,
relaxing the strict quasi-monochromatic limit (T = 8 s)
adopted in the previous work. The upper panel illus-
trates the temporal evolution of the total power statistic
Li (solid curve). Due to the extended integration time,
the overall amplitude of Li is significantly elevated com-
pared to Ref. [1], benefiting from the increased coherent
gain. The curve’s modulation reflects the secular evo-
lution of the gravitational-wave amplitude coupled with
the diurnal variation of the detector’s antenna pattern.
The scatter points depict the λ values distributed across
the anchor bin (κ = 0, red) and its nearest neighbors
(κ = ±1, blue/green). A notable feature appears in
the high-frequency regime (later times): while the to-
tal power remains high, the extended T induces severe
spectral leakage as the signal’s chirp rate increases. Con-
sequently, the power concentrated in individual bins (the
dots) suffers greater loss relative to the total power. This
phenomenon is quantified in the lower panel by the spec-
tral leakage factor η, which exhibits rapid oscillatory be-
havior corresponding to the evolution of the sampling
phase o0,i.
The objective of the subsequent sections is to construct

a precise analytical model for this universal leakage func-
tion η(o).

C. Validity of Approximations

The extent to which a signal’s frequency evolves within
a single STFT segment is quantified by the dimensionless
widening factor, w. It is defined as the total frequency
drift across the segment duration TDFT, normalized by
the frequency resolution bin width fbin = 1/TDFT:

w ≡ |ḟ |T 2
DFT =

|ḟ |TDFT

fbin
. (16)

This parameter serves as the governing metric for the va-
lidity of spectral leakage models η(o). In the monochro-
matic limit (w → 0), where frequency evolution is negli-
gible, the leakage function simplifies to the squared mod-
ulus of the window function’s Fourier transform [1]:

η(o) =
∣∣∣W̃ (o)

∣∣∣2 . (17)

Previous studies [57, 61] indicate that this approximation
remains highly accurate for signals satisfying the quasi-
monochromatic condition, typically w ≲ 0.5.
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FIG. 1. Evolution of λ[i, κ] and Li (upper) and the
spectral leakage factor ηi[κ] (lower) over STFT time
segments for a simulated mini-EMRI signal. In both
panels, the red dots represent the value in the anchoring fre-
quency bin (κ = 0), while the blue and green dots show the
values in the adjacent bins (κ = ±1). The yellow curve in
the upper panel shows the total power statistic Li, calculated
using a smoothed LIGO-H1 O3 PSD. The simulation uses a
signal with m1 = 1.5M⊙, m2 = 1× 10−5M⊙, and d = 8 kpc,
analyzed in the 100-200 Hz band. STFT parameters include
TDFT = 64s, sampling frequency fs = 512Hz, a Tukey win-
dow (α = 0.5), and 50% overlap between segments.

However, when w is non-negligible, the monochromatic
assumption breaks down. To rigorously assess the re-
quired model complexity, we analyze the signal phase
Φ(t) = 2π

∫
f(t)dt by performing a Taylor series ex-

pansion of the instantaneous frequency f(t) around the
segment center. This expansion decomposes the phase
into a polynomial in time: the linear term (∝ t) corre-
sponds to the constant carrier frequency, the quadratic
term (∝ t2) arises from the linear frequency derivative

ḟ (linear chirp), and higher-order terms describe more

complex frequency evolutions (e.g., f̈).
The validity of truncating this series is determined by

the phase contribution of the neglected terms. We can
define a critical widening factor wcrit,m, as the value of w
at which the contribution of the m-th order phase term

becomes significant. Assuming the signal follows a lo-
cal power-law evolution ḟ = kfn, we derive a universal
constant for the quadratic phase term—arising from the
linear frequency drift ḟ—which is independent of specific
signal parameters:

wcrit,2 =
4

π
≈ 1.2732. (18)

This value rigorously demarcates the boundary of the
monochromatic approximation. When w ≪ wcrit,2, the
effects of linear frequency evolution are negligible. As w
approaches or exceeds this critical value, the quadratic
phase term induces significant spectral spreading, neces-
sitating a linear chirp model.
For phase terms of order m > 2 (arising from f̈ and

higher derivatives), the critical thresholds wcrit,m are not
constant but depend on the specific signal parameters
and frequency evolution. These are illustrated for two
representative binary systems in Fig. 2.
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FIG. 2. Frequency evolution of the critical widening
(see text) factors wcrit,m (for orders m = 3, 4), assuming
a zeroth-order post-Newtonian inspiral model (n =
11/3). The two panels correspond to different representative
binary system parameters.

A key finding of this analysis is that the critical thresh-
olds for higher-order terms are extremely high, with
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wcrit,3 typically ranging from 102 to 105. This has
profound practical implications. To prevent excessive
spectral smearing and preserve viable SNR, STFT-based
analyses are typically constrained to a regime where
w ≲ 10. Since the practical limit on w is orders of mag-
nitude smaller than the critical values required for cubic
phase terms to become relevant (w ≪ wcrit,3), the ef-

fects of the second frequency derivative f̈—as well as all
higher-order derivatives—can be safely neglected.

Consequently, this analysis rigorously justifies approx-
imating the signal within each STFT segment as a linear
chirp (i.e., constant ḟ). This simplification underpins
the entire analysis framework presented in this paper. A
detailed derivation is provided in Appendix A.

D. Quantitative Description of Spectral Leakage

Having justified the linear chirp approximation in Sec-
tion III C, we now provide a detailed mathematical for-
mulation of the resulting spectral leakage pattern. This
serves as a high-fidelity local model for the signal’s spec-
tral shape.

The distribution of signal power within an STFT seg-
ment is completely characterized by the continuous spec-
tral leakage function, η(o, w). This function is parame-
terized by the dimensionless widening factor w and offset
factor o, which quantify the intra-segment frequency drift
and the proximity to the central frequency, respectively.

For a window functionW (τ) defined on the normalized
interval τ ∈ [−1/2, 1/2] and normalized to unit power
(see Appendix C for details), the leakage function has
the general form:

η(o, w) =
1

πw

∣∣∣∣∣
∫ √

π(o/
√
w+

√
w/2)

√
π(o/

√
w−

√
w/2)

W

(
u√
πw

− o

w

)
eiu

2

du

∣∣∣∣∣
2

.

(19)
Fig. 3 illustrates representative profiles of the spectral
leakage function. Generally, the function exhibits a decay
as the magnitude of the offset factor |o| increases, indicat-
ing that power is primarily localized around the carrier
frequency. However, a crucial phenomenon is observed
at higher widening: as w increases, the signal power is
smeared across a wider range of adjacent frequency bins.

This analytical model relies on the slow variation as-
sumption: The signal’s power is effectively constant over
the segment duration TDFT. This is valid because the
timescales of astrophysical amplitude evolution and de-
tector antenna pattern modulation are typically much
longer than the STFT coherence time.

Finally, for real-valued strain data, the power is dis-
tributed symmetrically between positive and negative
frequencies. The leakage function derived above de-
scribes the one-sided spectrum; thus, the effective leakage
for the positive frequency components is approximately
half that of the complex equivalent derived in Eq. (19). A
rigorous treatment accounting for the real-valued nature
of the signal is presented in Appendix B.
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FIG. 3. The spectral leakage function η(o, w) plotted
against the dimensionless frequency offset o for repre-
sentative widening factors w ∈ {0, 2, 5, 10}. The limiting
case w = 0 represents a monochromatic signal. The upper
panel illustrates the leakage pattern for a Rectangular win-
dow, while the lower panel shows the pattern for a Tukey
window.

IV. DETECTION STATISTIC

A. Statistical method

1. Distribution property

The power ratio R[i, k] in a pixel of the time-frequency
map is a random variable that follows the probability
density function (PDF):

PDF {R = x|λ} = e−x−
λ
2 I0

(√
2λx

)
, x ≥ 0, (20)

where λ is the non-centrality parameter, representing the
expected power SNR in that bin, and I0(·) is the modified
Bessel function of the first kind of order zero.

The mean and variance of R[i, k] can be calculated
directly from this distribution. For a given non-centrality
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parameter λ[i, k], they are:

µR[i, k] = 1 +
1

2
λ[i, k],

σ2
R[i, k] = 1 + λ[i, k].

(21)

It is crucial to note that these are exact results and do
not rely on any weak-signal approximations.

Conventional search methodologies, such as the widely
implemented Hough transform pipeline [1, 57, 58, 61–64],
typically employ a peak-finding strategy for data reduc-
tion. In this paradigm, the full information content of
the normalized power spectrogram, R[i, k], is condensed
into a sparse binary “peakmap” by identifying bins that
exceed a significance threshold and constitute local max-
ima along the frequency axis. This discretized represen-
tation subsequently serves as the input for track-finding
algorithms to identify candidate signal trajectories.

In this work, we adopt a more direct approach by op-
erating on the power ratio map itself, which retains more
information and possesses well-defined statistical prop-
erties. For a given point in the parameter space (i.e., a
specific set of signal parameters), there is a correspond-
ing trajectory on the time-frequency map. Due to spec-
tral leakage, the signal power is not confined to a single
pixel per time segment but is distributed across several
frequency bins. The bins directly on the trajectory are
expected to have the highest SNR, with the SNR decreas-
ing in adjacent bins as a function of their distance from
the central track.

We propose the ΣR statistic, computed by a weighted
summation of the R[i, k] values along a candidate tra-
jectory. The weights ωi,k are chosen to match the ex-
pected power SNR distribution with spectral leakage. To
streamline the mathematical formulation, we define the
generalized track set T as the collection of time-frequency
pixels (i, k) associated with the signal. The detection
statistic is then expressed as a unified weighted sum over
this set:

ΣR =
∑
T
ωi,kR[i, k]. (22)

Crucially, unlike the single-pixel tracks utilized in conven-
tional methods, T can incorporate a cluster of frequency
bins at each time step to recover the signal power dis-
persed by spectral leakage. Unless otherwise specified,
we adopt a 3-pixel track width configuration (comprising
the anchor bin and its two immediate sidebands, corre-
sponding to relative indices κ ∈ {0,±1}) as the default
setting throughout this work.

Under the assumption that the power ratios R[i, k] in
different time-frequency pixels are statistically indepen-
dent, the Central Limit Theorem implies that the ag-
gregate statistic ΣR follows an approximately Gaussian
distribution. By the linearity of expectation and vari-
ance, its mean and variance are derived as the weighted

sums of the individual moments:

µΣR =
∑
T
ωi,k

(
1 +

1

2
λ[i, k]

)
,

σ2
ΣR =

∑
T
ω2
i,k (1 + λ[i, k]) .

(23)

It is important to acknowledge that in practice, the as-
sumption of strict independence is not fully satisfied, pri-
marily due to correlations induced by the overlap be-
tween time segments and spectral leakage between fre-
quency bins. A detailed discussion on the impact of these
correlations and the validity of this approximation is pro-
vided in Appendix H.
To create a standardized detection statistic, we define

the Critical Ratio (CR). This quantity measures the sig-
nificance of the observed ΣR by normalizing it with re-
spect to its expected value and standard deviation under
the null hypothesis (i.e., in the absence of a signal, where
λ[i, k] = 0 for all pixels). The CR is therefore defined as
the background-subtracted statistic divided by the back-
ground standard deviation:

CR ≡
ΣR−

∑
T ωi,k√∑

T ω
2
i,k

. (24)

By construction, the CR statistic for a track containing
only noise is a random variable with a mean of 0 and
a variance of 1. When a signal is present, the expected
mean and variance of the CR statistic are shifted. Substi-
tuting the signal-dependent moments from Eq. (23) into
the definition yields:

µCR =
1

2

∑
T ωi,kλ[i, k]√∑

T ω
2
i,k

,

σ2
CR = 1 +

∑
T ω

2
i,kλ[i, k]∑
T ω

2
i,k

.

(25)

The quantity µCR can be interpreted as the expected sta-
tistical significance of the detection for a given candidate
track. The variance, σ2

CR, is close to unity for weak sig-
nals but increases with signal strength. The CR serves
as the final, optimized statistic for identifying candidate
signals in the data.

2. Optimization of the weights

The detection efficacy of the ΣR statistic is critically
dependent on the optimal selection of the weights ωi,k.
Maximizing the detection significance is equivalent to
maximizing the expected Critical Ratio, µCR. Accord-
ing to the Cauchy-Schwarz inequality, this optimum is
achieved when the weights are directly proportional to
the expected power SNR in each time-frequency pixel:
ωi,k ∝ λ[i, k]. This aligns with the matched filter princi-
ple and was also a key component of the winning solution
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in the Kaggle challenge [72]: weights should be propor-
tional to the expected signal strength. We note that since
the CR statistic is invariant under global scaling transfor-
mations (i.e., ωi,k → c · ωi,k for any c > 0), the absolute
normalization of the weights does not affect the detection
significance.

In practice, however, constructing weights that are
strictly proportional to the instantaneous λ[i, k] is com-
putationally intractable for blind searches. The difficulty
arises from the sensitivity of the spectral leakage factor,
ηi[κ] = η(κ + o0,i), to the sub-bin sampling phase. As
illustrated in the bottom panel of Fig. 1, η oscillates
rapidly with variations in the offset factor o0,i. Conse-
quently, predicting the exact value of ηi[κ] for every pixel
would require a priori knowledge of the source parame-
ters with a precision far exceeding that of the search grid,
which is unrealistic for wide-parameter-space surveys.

To circumvent this limitation, we implement a sam-
pling phase-averaged strategy, extending ΣTrack from [1].
Instead of relying on the highly sensitive instantaneous
leakage, we define the averaged leakage function, η̂(o, w),
by integrating over a unit bin interval:

η̂(o, w) =

∫ o+1/2

o−1/2

η(o′, w) do′. (26)

From this, we define the discrete averaged spectral leakage
factor for the i-th segment as η̂i[κ] ≡ η̂(κ,wi). This for-
mulation effectively marginalizes over the unknown sam-
pling phase o0,i, smoothing out the rapid oscillatory be-
havior of the instantaneous leakage. As demonstrated
in Fig. 4, the averaged function captures the local mean
spectral behavior over multiple segments, providing a de-
terministic template for weight construction.

Consequently, the practical weights are defined propor-
tional to this averaged quantity:

ωi,k ∝ Liη̂i[k]. (27)

Substituting these weights into Eq. (23) and invoking the
slow-variation approximations (see Appendix D), the ex-
pected mean and variance of the CR simplify to:

µCR =
1

2

√∑
T

(Liη̂i[k])2,

σ2
CR = 1 +

∑
T (Liη̂i[k])3∑
T (Liη̂i[k])2

.

(28)

The adoption of this sampling phase-averaged weighting
scheme yields a detection statistic that is significantly less
sensitive to small parameter mismatches (specifically, er-
rors in the sampling phase o0,i). By effectively smooth-
ing out the rapid fluctuations of the instantaneous value,
this approach ensures that the statistic remains robust
and computationally feasible for practical blind search
campaigns.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

w

0.0

0.2

0.4

0.6

0.8

1.0

η̂
(w
,o

)

Average Spectral Leakage for Tukey Window

o = 0

o = 1

FIG. 4. The averaged spectral leakage function and
its comparison with smoothed simulation data. (Up-
per panel) The average spectral leakage function η̂(w, o). The
blue curve shows the power fraction in the central bin (κ = 0),
while the red curve shows the power in the first adjacent bin
(κ = 1). As widening increases, power clearly leaks from the
central bin into its neighbors. (Lower panel) A direct com-
parison validating the averaged model. The rapidly oscillating
data from Fig. 1 is smoothed using a 100-point moving aver-
age. This empirically smoothed result shows excellent agree-
ment with the theoretical averaged leakage function, confirm-
ing its validity as a robust model for the expected power dis-
tribution.

B. Maximum detectable distance

The primary objective of this statistical framework is
to map the abstract detection statistic into physically in-
terpretable constraints on the universe. Specifically, we
aim to translate the statistical confidence thresholds—
defined by the false alarm probability (Pfa) and false dis-
missal probability (Pfd)—into a metric of astrophysical
sensitivity: the maximum distance, dmax, at which a spe-
cific source can be confidently detected.

The detection performance is governed by two funda-
mental parameters: the false alarm probability Pfa, which
quantifies the risk of incorrectly classifying background
noise as a signal, and the false dismissal probability Pfd,
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which quantifies the risk of overlooking a genuine signal
present in the data.

First, the choice of Pfa determines the detection thresh-
old. Assuming the CR in pure noise follows a standard
normal distribution (as justified in Section IV), the de-
tection threshold CRthr is given by the inverse comple-
mentary error function:

CRthr =
√
2 erfc−1(2Pfa). (29)

Any candidate event with a CR value falling below this
threshold is deemed statistically insignificant and re-
jected.

Conversely, to ensure a high probability of detecting
a true signal, its expected CR value must lie sufficiently
above this noise floor. For a given false dismissal proba-
bility Pfd, the condition for the minimum required mean
statistic is:

µCR ≥
√
2 σCR erfc−1(2Pfd) + CRthr. (30)

This inequality establishes the minimum statistical sig-
nificance required to claim a detection with the specified

confidence level.

To translate this statistical requirement into a physical
distance, we isolate the distance dependence within the
total power statistic Li. We define the intrinsic strain
amplitude, he,i ≡ h0,id, which encapsulates the source’s
intrinsic evolution independent of its distance d. Con-
sequently, the total power SNR statistic can be factored
as:

Li =
1

d2

(
2h2e,iQ

2
i

TDFT

Sn,i

)
, (31)

where Qi represents the antenna pattern response and
Sn,i is the noise power spectral density. A detailed dis-
cussion is in Appendix C.

As detailed in Appendix E, when estimating the de-
tectable distance, we are by definition operating in the
weak-signal limit. In this regime, the signal’s contribu-
tion to the variance is negligible compared to the noise
background, implying σ2

CR ≈ 1. Applying this approx-
imation allows us to decouple the distance dependence
and derive the central result of our sensitivity analysis:

dmax =
[√

2 erfc−1(2Pfa) +
√
2 erfc−1(2Pfd)

]−1/2
[
1

4

∑
T
h4e,iQ

4
i

T 2
DFT

S2
n,i

η̂2i [κ]

]1/4
. (32)

This analytical formula provides a direct mapping from
source parameters to the detection horizon. For any
given astrophysical model, it enables the calculation of
the maximum sensitive distance, thereby quantifying the
effective volume of the universe accessible to our search.

C. Effective parameter sphere

Practical searches for gravitational-wave signals in
noisy data necessitate the use of a discrete grid of wave-
forms, known as a template bank, to span the vast pa-
rameter space of potential sources. Since the parameters
of astrophysical signals are continuous variables, a real
signal will rarely align perfectly with any single discrete
template. Consequently, it is imperative to quantify the
degradation of the detection statistic caused by the pa-
rameter mismatch between the search template and the
true signal.

To formalize this, we define the output of the search
pipeline as the expected Critical Ratio, µCR(Pt|Pr), ob-
tained when probing for a signal with true parameters
Pr using a template with parameters Pt. While the ana-
lytical form of µCR is derived in Appendix D, its value is
fundamentally governed by the degree of overlap between
the template and the signal waveforms.

To quantify the recovery efficiency, following the for-

malism in [1], we define the fitting factor (FF). This met-
ric represents the ratio of the expected statistic recovered
by the template to the maximum achievable statistic if
the template were perfectly matched to the signal:

FF(Pt|Pr) ≡
µCR(Pt|Pr)
µCR(Pr|Pr)

. (33)

By definition, the fitting factor is a normalized measure
of effectualness, ranging from 0 (no match) to 1 (perfect
match).
Building on this, we define the mismatch (MM) to rep-

resent the fractional loss in astrophysical sensitivity. Un-
like standard conventions which often define mismatch in
terms of power SNR loss, we adopt a definition directly
tied to the cosmological reach. As established in Eq. (32)
and Eq. (28), the detection distance as dmax ∝ √

µCR.
Consequently, the fractional loss in detectable distance
is given by 1 −

√
FF. We therefore define the mismatch

as:

MM ≡ 1−
√
FF. (34)

This physically motivated definition renders the mis-
match an exceptionally intuitive metric: a value of MM =
0.01 corresponds to a 1% reduction in the detector’s reach
distance.
This metric serves as the foundational criterion for

template bank construction. The objective is to populate
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the parameter space with templates such that the mis-
match for any arbitrary signal remains below a predefined
tolerance, MMmax, thereby ensuring uniform sensitivity
across the target parameter space. This requirement
can be formulated as a classic geometric covering prob-
lem. For a given template, the condition MM ≤ MMmax

defines a high-dimensional volume around the template
center within which signals are detected with sufficient
efficiency. In the limit of small parameter offsets, this
iso-mismatch surface is well-approximated by a hyper-
ellipsoid, often referred to as the metric ellipse or effec-
tive detection sphere. The task of constructing a template
bank is thus transformed into the challenge of efficiently
tiling the parameter space with these overlapping ellip-
soids. The overarching goal is to minimize the number
of templates to reduce computational cost while guaran-
teeing that no ”holes” exist where the sensitivity drops
below the required threshold. The specific algorithms
implementing this stochastic geometric placement are de-
tailed in subsequent work.

V. RESULTS

In this section, we apply the comprehensive theoreti-
cal framework developed in the preceding sections to a
practical search scenario. We leverage our description
of spectral leakage, which is valid beyond the traditional
quasi-monochromatic approximation, to guide the opti-
mization of key search parameters. By employing the
new ΣR statistic, we demonstrate how this theoretically-
grounded approach enables a significant enhancement in
search sensitivity. The ultimate metric for this sensitiv-
ity is the effective detection volume, Veff , which repre-
sents the astrophysical reach of our search averaged over
all source sky locations and orientations, as formally de-
fined in Eq. (F3) of Appendix F. This volume is computed
via the effective distance, deff . The calculation is made
tractable by incorporating the fully-averaged antenna-
pattern factor ⟨Q⟩ (from Eq. (F6)) which encapsulates
the complete geometric average over sky position, orien-
tation, and sidereal time.

We now apply our framework to a concrete target: a
fiducial mini-EMRI system consisting of a typical neu-
tron star (m1 = 1.5M⊙) and a strange compact object
(m2 = 10−5M⊙). Our analysis focuses on the 100-200
Hz frequency band, where the signal is expected to be
most prominent for ground-based detectors. Fig. 1 illus-
trates the key statistics for a simulated signal from such
a system.

Our primary goal is to determine the optimal coherent
time TDFT that maximizes search sensitivity. Previous
searches were restricted by the quasi-monochromatic ap-
proximation, which strictly limited the coherent time to
TDFT ≤ 8 s to avoid excessive spectral leakage. Our new
framework, which analytically models and accounts for
this leakage, allows us to break free of this long-standing
constraint. This enables a comprehensive optimization of
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FIG. 5. The effective detection volume Veff as a func-
tion of coherent integration time, TDFT, for the fidu-
cial mini-EMRI system, computed using the O3 PSD
for the LIGO Hanford detector. The performance is eval-
uated for a set Pfd = 5% and Pfa = 1%. STFT uses the
Tukey window function (α = 0.5) with a 50% overlap. The
red curve illustrates the performance of our novel ΣR statis-
tic. In comparison, the blue curve depicts the performance of
a statistic based on the Hough transform strategy. Instead of
a full pipeline execution, this peak statistic is computed by
summing binary pixels along the signal trajectory, mimicking
the standard Hough approach which selects peaks based on
a power ratio threshold (here θ = 2.5) and a spectral local
maximum condition. The performance at T = 8s, the op-
timal choice under the quasi-monochromatic assumption, is
marked in the panel. Our new method, which transcends this
limitation, finds a true optimal coherent time at T = 64s.

TDFT over a wide range to maximize search sensitivity.
Fig. 5 illustrates the direct consequence of this ad-

vancement, plotting the effective detection volume as a
function of TDFT for both our new method and a conven-
tional approach. For both pipelines, the detection volume
initially rises with longer integration times—a direct re-
sult of the coherent gain in SNR (see Appendix E). How-
ever, as TDFT continues to increase, the signal’s rapid fre-
quency evolution begins to spread its power across many
frequency bins. This spectral leakage eventually domi-
nates, causing the sensitivity to decline. While the con-
ventional method is confined to the quasi-monochromatic
limit at TDFT = 8 s, our method identifies a true global
optimum at TDFT = 64 s. At this optimal integration
time, our method yields an approximately 10-fold in-
crease in the effective detection volume compared to the
previous state-of-the-art. This represents a dramatic,
order-of-magnitude improvement in search sensitivity.
To demonstrate the practical impact of our method in

a realistic broadband search scenario, we move beyond
narrow-band analyses and consider a full signal trajec-
tory evolving from 30Hz to 1000Hz over an observation
period of 66 days. In this context, we allow both the con-
ventional and the proposed pipelines to freely optimize
their parameters to achieve their respective maximum
performance.
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FIG. 6. Relative effective detection volume as a func-
tion of the number of frequency layers N . The y-axis
represents the ratio of the effective detection volume to that
of the reference case, which is the optimal configuration of the
conventional Hough-transform pipeline.

For the conventional Hough-transform pipeline, we
perform a global optimization to select the single best
coherent time TDFT that maximizes the total detection
volume over this wide band. The optimization yields a
best-case scheme of TDFT = 32 s. Although this is the
mathematical optimum for the standard pipeline, it ef-
fectively restricts the sensitive search window to a narrow
frequency band of f ∈ [80, 135]Hz—sacrificing the vast
majority of the signal’s time-frequency evolution.

In stark contrast, the ΣR framework is intrinsically ca-
pable of local optimization. Leveraging our rigorous leak-
age model, we are free to implement a frequency-layered
strategy that adapts to the signal’s evolution across the
entire 30–1000Hz band, which extends a framework pre-
sented for searches for compact binary inspirals in future
ground-based GW interferometers [73] to mini-EMRIs.
By partitioning the bandwidth into distinct layers and
optimizing the coherent time locally, we maintain peak
sensitivity throughout the signal’s lifetime.

The result of this comparison, illustrated in Fig. 6,
reveals a twofold advantage of our framework. First,
even in the simplest single-layer configuration (N = 1),
the ΣR method already yields a 6.5-fold increase in de-
tection volume compared to the optimized Hough base-
line. Second, as we exploit the freedom to implement
the frequency-layered strategy, the performance improves
further. As the number of layers increases from N = 1 to
N = 10, the improved matching of the coherent time to
the local signal evolution compounds the gain, ultimately
achieving an effective detection volume that is approxi-
mately an order of magnitude larger than the conven-
tional limit.

To elucidate the practical implementation of the multi-
layer strategy, Fig. 7 presents the detailed configuration
for the representative case of N = 10 layers. The plot
visualizes the target signal’s time-frequency trajectory
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FIG. 7. Visualization of the optimal frequency-
layering strategy for the target mini-EMRI signal.
The blue curve represents the signal’s frequency evolution
over time. The entire search band is partitioned into N = 10
distinct layers by critical frequencies (horizontal dashed lines),
with the coherent time TDFT decreasing stepwise from 1024 s
in the lowest layer to 2 s in the highest.

overlaid with the optimized layer boundaries, defined by
a set of critical frequencies. Details about the frequency
layering strategy are discussed in Appendix G.
Enabled by this frequency-layered architecture, the co-

herent integration time TDFT is dynamically adapted to
the signal’s local chirp rate, decreasing stepwise from a
maximum of 1024 s in the lowest frequency layer to 2 s in
the highest layer. This stepwise reduction is critical to
counterbalance the rapidly accelerating frequency evolu-
tion of the inspiral. Consequently, the widening factor re-
mains constrained within the optimal regime throughout
the entire observation. By preventing excessive spectral
leakage at high frequencies while preserving long coher-
ent integration times at low frequencies, this configura-
tion realizes the order-of-magnitude expansion in detec-
tion volume quantified in Fig. 6.

VI. CONCLUSIONS

In this paper, we have taken a major step forward in
developing a search pipeline for mini-EMRI signals. We
have extended our method, ΣTrack, to handle the case
of significant spectral leakage via a new statistic, ΣR,
that allows us to significantly increase the analysis coher-
ence time with respect to that used in standard methods
that only consider the signal as monochroamtic within
each fast Fourier transform and do not consider the im-
pact of spectral leakage. additionally, we have derived a
new sensitivity estimate of our method, and shown that
by accurately modeling spectral leakage and optimizing
the coherent time, ΣTrack boosts the effective detection
volume for this system by an order of magnitude. This
dramatic enhancement in search sensitivity translates di-
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rectly into a correspondingly higher probability of detect-
ing these elusive mini-EMRI sources with current and
future gravitational-wave observatories.

In future work, we plan to generalize our method fur-
ther to handle non-stationary, non-Gaussian noise, which
will be essenetial to apply ΣTrack to real data. Moreover,
following [1], we will determine a discretization of the
search parameter space based on a mismatch between
signals in the time-frequency plane to generate a bank
of mini-EMRI templates to ensure that a real search is
tractable.
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Appendix A: Phase Expansion in the Fourier
Domain

In this appendix, we provide a detailed derivation of
the conditions under which a general frequency-evolving
signal can be approximated by either a monochromatic
or a linear-chirp model within a single coherent integra-
tion time, T . This analysis forms the mathematical basis
for extending the coherent integration time beyond the
traditional quasi-monochromatic limit.

We begin with a general, continuous frequency-
modulated signal, which can be expressed in complex
form as:

s(t) = A(t)eiϕ(t), (A1)

where A(t) is the time-varying amplitude and ϕ(t) is the
phase. The phase is determined by the integral of the
signal’s instantaneous frequency f(t):

ϕ(t) = ϕ0 + 2π

∫ t

0

f(τ)dτ, (A2)

where ϕ0 is the initial phase at t = 0.
To analyze this signal in the frequency domain, we

consider its STFT of duration T centered at t = 0. The
Fourier transform of the windowed segment is:

s̃(f) =

∫ T/2

−T/2
A(t) exp

(
iϕ0 + i2π

∫ t

0

f(τ)dτ

)
e−i2πftdt.

(A3)

To make this integral tractable, we Taylor-expand the
instantaneous frequency f(t) around the center of the
window, t = 0:

f(t) = f0 + ḟ0t+
1

2
f̈0t

2 + · · · , (A4)

where f0, ḟ0, f̈0 are the frequency and its time derivatives
evaluated at t = 0. Integrating this series gives the full
phase expansion:

ϕ(t) = ϕ0 + 2π

∫ t

0

(
f0 + ḟ0τ +

1

2
f̈0τ

2 + · · ·
)
dτ

= ϕ0 + 2π

(
f0t+

1

2
ḟ0t

2 +
1

6
f̈0t

3 + · · ·
)
.

(A5)

For many astrophysical signals, the amplitude A(t)
evolves on a much longer timescale than the coherent
integration time T . We can therefore make the stan-
dard assumption that the amplitude is constant within
the window, A(t) ≈ A(0). This allows us to simplify the
Fourier integral significantly:

s̃(f) ≈A(0)
∫ T/2

−T/2
eiϕ(t)e−i2πftdt

=A(0)

∫ T/2

−T/2
e(iϕ0+i2πf0t+iπḟ0t

2+ iπ
3 f̈0t

3+··· )e−i2πftdt.

(A6)
The central challenge in simplifying the integral is to de-
termine at which order the phase expansion can be trun-
cated. We can truncate the series after the quadratic
term (t2) if the combined phase contribution from all
higher-order terms (cubic and beyond) is much less than
one radian over the entire integration interval. When

this condition, |
∑∞
j=3 2π

f
{j−1}
0

j! tj | ≪ 1, is met, we can

use the approximation ex = 1 + x + x2/2 + · · · ≈ 1 for
the higher-order part of the exponent.
This allows us to separate the integral into a primary

component and a small residual term, which can then be
neglected:∫ T/2

−T/2
e(iϕ0+i2πf0t+iπḟ0t

2+ i
3πf̈0t

3+··· )e−i2πftdt

=

∫ T/2

−T/2
e(iϕ0+i2πf0t+iπḟ0t

2)
(
1 +

i

3
πf̈0t

3 + · · ·
)
e−i2πftdt

≈
∫ T/2

−T/2
e(iϕ0+i2πf0t+iπḟ0t

2)e−i2πftdt.

(A7)
To formalize this truncation, we must quantify the con-
tribution of each higher-order term. We first adopt a
general power-law signal model, ḟ = kfn, which is rep-
resentative of many astrophysical sources. Under this
model, the m-th derivative of the frequency can be writ-
ten in a compact form:

f
{m}
0 =

dmf(t)

dtm

∣∣∣∣
t=0

= C(m,n)kmf
m(n−1)+1
0 , (A8)
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where the coefficient is C(m,n) =
∏m−1
j=0 [j(n− 1) + 1].

The phase contribution corresponding to the tm term in
the expansion is:

PT(m) = 2π

∫ t

0

f
{m−1}
0

(m− 1)!
τm−1dτ

= 2π
f
{m−1}
0

m!
tm

= 2π
C(m− 1, n)

m!
km−1f

(m−1)(n−1)+1
0 tm.

(A9)

The influence of this term is maximal at the edges of the
window, t = ±T/2. To create a dimensionless metric, we

introduce the widening factor w ≡ |ḟ0|T 2. By substitut-
ing t = T/2 into Eq. (A9) and re-expressing T in terms of
w, we find the maximum phase contribution of the m-th
order term:

max |PT(m)| = 2π
C(m− 1, n)

m!
km−1f

(m−1)(n−1)+1
0

(
T

2

)m
=

2πC(m− 1, n)

m!2m
k

m
2 −1f

mn
2 −m−n+2

0 w
m
2 .

(A10)
We now define a critical widening factor, wcrit,m, as the
value of w for which this maximum phase contribution
equals 1 radian. Setting the above expression to 1 and
solving for w yields:

wcrit,m =

(
m!2m

2πC(m− 1, n)
k1−

m
2 f

m+n−mn
2 −2

0

) 2
m

.

(A11)
This powerful result allows us to express the maximum
phase contribution of any term in a very elegant form:

max |PT(m)| =
(

w

wcrit,m

)m
2

. (A12)

This inequality provides a clear condition for truncating
the phase expansion. For a given order m, if the signal’s
widening factor w is much smaller than the critical factor
wcrit,m, then the m-th order phase term is negligible. It
is important to note that this linear approximation is
only meaningful when the ratio in Eq. (A12) is small.
When the phase contribution is of order 2π or larger, its
periodic nature means its absolute value is no longer a
good measure of its impact on the integral.

The framework provides a explanation for the validity
of commonly used signal approximations. We summarize
the key conclusions for the two most important cases.

• The Quasi-Monochromatic Approximation
(m = 2): The phase expansion begins with the
constant (m = 0) and linear (m = 1) terms,
which represent the signal’s central time frequency.
The first term describing frequency evolution is the
quadratic term (m = 2). The critical widening fac-
tor for this term is a universal constant for any

power-law signal: wmax,2 = 4/π ≈ 1.2732. This re-
sult provides the formal justification for the widely-
used quasi-monochromatic condition. To neglect
all frequency evolution, the signal’s widening fac-
tor w must be much less than 4/π. The practi-
cal choice of w < 0.5 corresponds to the condition
w ≪ wmax,2, ensuring the signal can be accurately
treated as monochromatic over the time duration
T .

• The Linear-Chirp Approximation (m = 3):
When the quasi-monochromatic condition is vio-
lated (w ≳ 1), we must include the quadratic phase
term. The next question is whether the cubic term
(m = 3) is also necessary. As shown in the exam-
ples in Fig. 2, the critical widening factor for the
cubic term, wmax,3, is typically very large for astro-
physical systems, often on the order of 103 − 104.

This has a crucial implication: for any practical search
where the widening factor is in the range of 0 < w ≲
10, the condition w ≪ wmax,3 is strongly satisfied. This
means that the cubic and all higher-order phase terms
can be safely ignored. Therefore, even when a signal
evolves rapidly, a linear-chirp model (retaining terms up
to m = 2) provides an extremely accurate representation
of the signal’s phase. This is the fundamental principle
that enables our search method to extend the coherent
integration time far beyond traditional limits.

Appendix B: Linear chirp signal model

We begin with the mathematical model for a discrete,
complex linear-chirp signal sampled N times over a total
duration T . The time-domain sequence is written as:

s[n] = exp

(
i

[
ϕ0 + 2πf0

T

N
n+ πḟ

T 2

N2
n2
])

, (B1)

where ϕ0 is the initial phase at the start of the segment.
The parameter f0 represents the instantaneous frequency
at t = 0 (the start of the interval), and ḟ is the constant

chirp rate. For this derivation, we assume ḟ > 0, such
that the instantaneous frequency evolves as f(t) = f0+ḟ t
over the segment.

It is important to clarify why we specifically analyze
a complex signal with unit amplitude, which can ensure
that the time-domain power is constant at unit. This
convention is analytically convenient because from the
definition Eq. (13) the power spectrum value in a single
bin |x̃[k]|2, directly corresponds to our spectral leakage
function, η(w, o).
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The DFT of this signal at frequency bin k is given by:

s̃[k] =
1

N

N−1∑
n=0

s[n] e−i2π
k
N n

=
eiϕ0

N

N−1∑
n=0

exp

{
i

[
2π (f0T − k)

n

N
+ πḟT 2 n

2

N2

]}
.

(B2)
For a sufficiently large number of samples N , where

the normalized time variable µ = n/N becomes quasi-
continuous, this discrete sum can be accurately approxi-
mated by its corresponding integral. By making the sub-

stitution 1/N
∑N−1
n=0 →

∫ 1

0
dµ, we obtain:

s̃[k] ≈ eiϕ0

∫ 1

0

exp
{
i
[
2π (f0T − k)µ+ πḟT 2µ2

]}
dµ.

(B3)
This integral is of the Fresnel type. By completing

the square in the exponent and performing the standard
change of integration variable, the result can be expressed
in terms of the complex Fresnel integral:

s̃[k] =
1√
πḟT 2

eiϕ0−iv2
∫ v+

√
πḟT 2

v

eiu
2

du, (B4)

where the lower integration limit v is a dimensionless
quantity defined as:

v ≡
√
π
f0T − k√
ḟ T 2

. (B5)

To generalize the analysis and make the spectral be-
havior more transparent, we introduce two convenient
dimensionless quantities:

• The widening factor, w, which represents the di-
mensionless chirp strength over the segment dura-
tion:

w ≡ ḟT 2. (B6)

• The offset factor, o, which measures the frequency
offset (in units of bins) between the bin frequency
fk = k/T and the signal’s central time frequency

over the segment, fc = f0 + ḟT/2:

o ≡ (fk − fc)T

=

(
k

T
− f0 −

1

2
ḟT

)
T

= (k − f0T )−
1

2
w.

(B7)

Expressed in terms of these dimensionless variables,
the normalized power in a single frequency bin k, which
we denote as the spectral leakage factor η(w, o), is given
by the squared modulus of the DFT coefficient:

η(o, w) ≡ 1

πw

∣∣∣∣∣
∫ √

π(o/
√
w+

√
w/2)

√
π(o/

√
w−

√
w/2)

eiu
2

du

∣∣∣∣∣
2

. (B8)

For the case of a negative chirp rate (ḟ < 0), the result
for η(w, o) remains identical due to the symmetries of
the complex exponential and the squared magnitude op-
eration. The phase of s̃[k] would change, but the power
spectrum is unaffected.
It is crucial to recognize that the function η(o, w) de-

scribes a continuous power spectrum as a function of the
offset o. The power spectrum calculated from a DFT
|s̃[k]|2, is a discrete sampling of this continuous profile,
evaluated at the specific offset values corresponding to
each integer frequency bin k.
The preceding analysis was based on an implicit rect-

angular window, which has a constant value over the in-
tegration time T . However, in practical signal process-
ing, other window functions (such as Hann, Hamming, or
Tukey) are often applied to the time-domain data. It is
therefore crucial to generalize our model for an arbitrary,
power-normalized window function.
Let W (τ) be a window function defined over the

normalized time interval τ ∈ [−1/2, 1/2], satisfying

the power-normalization condition
∫ 1/2

−1/2
|W (τ)|2dτ = 1.

When this window is applied to the time-domain signal,
the derivation for the spectral leakage factor η follows
the same procedure, but with the window function car-
ried through the integral.
After performing the same change of variables that

leads to the Fresnel integral representation, the gener-
alized spectral leakage function takes the form:

η(o, w) =
1

πw

∣∣∣∣∣
∫ √

π(o/
√
w+

√
w/2)

√
π(o/

√
w−

√
w/2)

W

(
u√
πw

− o

w

)
eiu

2

du

∣∣∣∣∣
2

.

(B9)
This is a powerful and general result. It shows that the
spectral power of a linear chirp signal, when windowed by
an arbitrary functionW , can be expressed as the squared
magnitude of a generalized Fresnel integral, where the in-
tegrand is now modulated by the window function itself,
mapped into the domain of the integration variable u.
Finally, we extend the analysis to a real-valued signal,

which is the form encountered in physical measurements.
A real-valued linear chirp with unit power can be con-
structed from its complex analytic representation, which
we denote as s[n]:

sr[n] =
√
2 cos

(
ϕ0 + 2πf0

T

N
n+ πḟ

T 2

N2
n2
)

=
1√
2
(s[n] + s[n]∗) .

(B10)

The factor of
√
2 ensures that the average power of the

real signal is unity. Due to the linearity of the DFT, the
transform of the real signal s̃r[k], can be expressed in
terms of the transform of the complex signal s̃[k]:

s̃r[k] =
1√
2
(s̃[k] + s̃[−k]∗) . (B11)

It is important to clarify the indexing notation s̃[−k]∗.
For a DFT of length N , the index −k is interpreted mod-
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ulo N ; that is, for k ∈ {0, . . . , N − 1}, the index corre-
sponds to N − 1 − k. This term represents the contri-
bution from the complex conjugate (negative frequency)
component of the signal.

The power spectrum of the real signal ηr = |s̃r[k]|2, is
therefore:

ηr(o, w) =
1

2

(
|s̃[k]|2 + |s̃[−k]|2 + 2Re{s̃[k]s̃[−k]}

)
.

(B12)
Substituting our leakage function η(w, o) = |s̃[k]|2, this
becomes:

ηr(w, o) =
1

2
η(w, o) +

1

2
η(w, o+ 2fcT ) + cross-term.

(B13)
Here, the central time frequency of the signal is fc, and
the argument of the second term, o + 2fcT , reflects the
offset from the negative-frequency center at −fc. This
equation has a clear physical interpretation:

1. 1
2η(w, o): Half the power from the positive-
frequency component, centered at +fc.

2. 1
2η(w, o+2fcT ): Half the power from the negative-
frequency ”mirror” component, centered at −fc,
which leaks into the positive frequency bins.

3. cross-term: An interference term arising from the
coherent sum of the positive and negative frequency
components.

When the carrier frequency is well-separated from zero
frequency (i.e., fc ≫ ḟT , or in dimensionless terms,
fcT ≫ w), the contribution from the negative-frequency
image and the cross-term become negligible for positive
frequency bins (k > 0).

ηr(w, o) ≈
1

2
η(w, o), o > 0 (B14)

This factor of 1/2 has a direct physical interpretation.
A real-valued signal is mathematically the sum of a
positive-frequency complex signal and its conjugate. The
total power of the unit-power real signal is equally di-
vided between these two components. Our leakage func-
tion η(w, o) was defined for an idealized unit-power com-
plex signal, which has all its power concentrated at the
positive frequency.

Since the positive-frequency component of the real sig-
nal contains only half the total power, its contribution to
the power spectrum is correspondingly scaled by a factor
of 1/2. In essence, the power measured in the positive-
frequency spectrum is approximately half that of the ide-
alized complex signal because the other half of the power
resides in the negative-frequency component, which we
can safely ignore in this approximation.

Appendix C: Power-normalization of the window
function

The DFT inherently applies an implicit rectangular
window to the data segment. The relationship between

the time-domain power and frequency-domain power is
governed by Parseval’s theorem, which states:

P =
1

N

N−1∑
n=0

|s[n]|2 =

N−1∑
k=0

|s̃[k]|2. (C1)

In practical STFT, however, various window functions,
W [n], are applied to the time series to mitigate spectral
leakage. When a window is applied, the signal becomes
s[n] ·W [n], and Parseval’s theorem must be applied to
this new windowed sequence:

PW =
1

N

N−1∑
n=0

|W [n]s[n]|2 =

N−1∑
k=0

|s̃[k]|2. (C2)

The application of a window function inherently alters
the total power of the signal. To ensure that our power
measurements remain consistent and physically meaning-
ful regardless of the window chosen, we must adopt a
specific normalization convention.
For this purpose, we define a power-normalized win-

dow. Any original window function, Worig[n], can be
converted to its power-normalized version, W [n], by di-
viding it by its root mean square (RMS) value:

W [n] =
Worig[n]

Cpower
, (C3)

where the normalization constant Cpower is the RMS
value of the original window:

Cpower =

√
1

T

∫ T

0

|Worig(t)|2dt ≈

√√√√ 1

N

N−1∑
n=0

|Worig[n]|2.

(C4)
By its very definition, this normalization ensures that the
power of the normalized window function itself is unity
1
N

∑
|W [n]|2 = 1.

The benefit of this convention becomes clear when we
consider the power of a physical signal. Let’s assume the
amplitude of our signal s[n] evolves slowly and can be ap-
proximated as constant over a single short-time Fourier
transform segment. If the underlying signal has an av-
erage power of P , we can approximate |s[n]|2 ≈ P . The
power of the windowed signal then becomes:

PW =
1

N

N−1∑
n=0

|W [n]|2|s[n]|2 ≈ P

(
1

N

N−1∑
n=0

|W [n]|2
)
.

(C5)
Since our power-normalized window ensures that the
term in the parenthesis is equal to one, we arrive at the
desired result:

PW ≈ P. (C6)

This crucial result guarantees that the total power mea-
sured in the spectrum of the windowed signal PW remains
a consistent and unbiased estimator of the true average
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power of the underlying physical signal P regardless of
the specific shape of the window function applied.

Therefore, for the gravitational wave signal discussed
in our main text, we can establish a specific, window-
function-independent form for the signal’s power Pi.

Pi ≈
1

2
h20,iQ

2
i . (C7)

This provides a direct physical interpretation for the
power measured in the spectrum.

Appendix D: Derivation of Critical Ratio Moments

In this appendix, we derive the analytical expressions
for the mean (µCR) and variance (σ2

CR) of the Criti-
cal Ratio statistic, utilizing the sampling phase-averaged
weighting scheme defined in Eq. (27).

1. Evaluation on the Real Signal Track (Perfect
Match)

To simplify the exposition, we first consider the sce-
nario of a single-pixel track, where for each time segment
i, the generalized track T consists solely of the anchor bin
(corresponding to the relative index κ = 0). The gener-
alization to multi-pixel tracks is straightforward due to
the linearity of the summation.

We focus first on the numerator of the expected mean
µCR, denoted as Nµ =

∑
T ωi,kλ[i, k]. Substituting the

weight definition ωi,k = Liη̂i[κ] and the factorization
λ[i, k] = Liηi[κ], the derivation proceeds as follows:

Nµ =

N∑
i=1

Liη̂i[κ] (Liηi[κ])

=

N∑
i=1

L2
i η̂i[κ]ηi[κ]

=

N∑
i=1

1

2L+ 1

i+L∑
j=i−L

L2
j η̂j [κ]ηj [κ]

≈
N∑
i=1

L2
i η̂i[κ]

2L+ 1

i+L∑
j=i−L

ηj [κ]

≈
N∑
i=1

L2
i η̂i[κ]η̂i[κ] =

N∑
i=1

(Liη̂i[κ])2 .

(D1)

Consequently, the mean of the Critical Ratio simplifies
to:

µCR =
1

2

Nµ√∑
T ω

2
i,k

≈ 1

2

√∑
T

(Liη̂i[κ])2. (D2)

This derivation relies on three key mathematical steps:

• Moving Average Identity (Line 2 → 3): We
rewrite the summation as a moving average over a
window of 2L+1 time segments. Neglecting bound-
ary effects, this is a mathematical identity.

• Slow-Varying Approximation (Line 3 → 4):
We assume that the macroscopic quantities—the
total power statistic Lj and the averaged leakage
factor η̂j [κ]—vary slowly compared to the window
length L. They are treated as constant within the
local window [i− L, i+ L] and factored out of the
inner summation.

• Ergodic Approximation (Line 4 → 5): This
is the core physical approximation. We posit that
the time-average of the rapidly oscillating instan-
taneous leakage ηj [κ] is equivalent to the phase-
averaged leakage function η̂i[κ] (which integrates
over the offset parameter o). Mathematically,

1
2L+1

∑i+L
j=i−L ηj [κ] ≈ η̂i[κ]. This assumes that the

sequence of sampling phases {o0,j} provides a dense
and uniform sampling of the continuous offset in-
terval [−0.5, 0.5].

Following an analogous logic, the variance σ2
CR is de-

rived by expanding its numerator Nσ =
∑

T ω
2
i,kλ[i, k]:

Nσ =

N∑
i=1

(Liη̂i[κ])2 (Liηi[κ])

=

N∑
i=1

1

2L+ 1

i+L∑
j=i−L

L3
j (η̂j [κ])

2ηj [κ]

≈
N∑
i=1

L3
i (η̂i[κ])

2

2L+ 1

i+L∑
j=i−L

ηj [κ]

≈
N∑
i=1

L3
i (η̂i[κ])

2η̂i[κ] =

N∑
i=1

(Liη̂i[κ])3 .

(D3)

Substituting this into the general variance formula yields:

σ2
CR = 1 +

∑
T (Liη̂i[κ])3∑
T (Liη̂i[κ])2

. (D4)

This result highlights the dependence of variance on sig-
nal strength. In the weak-signal limit (Li ≪ 1), the sec-
ond term vanishes, leading to σ2

CR ≈ 1, consistent with
the null hypothesis. For multi-pixel configurations, the
derivation follows an identical logic, with the summation
set T simply expanded to include the relevant sideband
bins.

2. Rationale for the 3-Pixel Track

To determine the optimal spatial extent of the general-
ized track T , we analyze the contribution of each relative
frequency bin κ to the total detection sensitivity. Re-
call from Eq. (32) that the maximum detectable distance
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scales with the square root of the collected power term.
We expand the summation over the generalized track into

contributions from the central anchor bin (κ = 0) and
symmetric sideband pairs (κ = ±1,±2, . . . ):

∑
(i,k)∈T

(Liη̂i[κ])2 =

N∑
i=1

L2
i

∑
κ

η̂2i [κ]

=

N∑
i=1

L2
i

 η̂2i [0]︸︷︷︸
Anchor Bin

+ η̂2i [1] + η̂2i [−1]︸ ︷︷ ︸
1st Sidebands

+ η̂2i [2] + η̂2i [−2]︸ ︷︷ ︸
2nd Sidebands

+ · · ·


≈

N∑
i=1

L2
i

(
η̂2(0, wi) + 2η̂2(1, wi) + 2η̂2(2, wi) + · · ·

)︸ ︷︷ ︸
≡Ψ(wi)

.

(D5)

Here, we invoke the slowly-varying approximation. We
assume that the expected noise power spectral density
varies negligibly across the narrow frequency bandwidth
(typically spanning only a few bins) where the spectral
leakage function η̂ exhibits significant structure. Con-
sequently, the term Li is treated as effectively constant
with respect to the relative frequency index κ and can
be factored out of the summation. Proceeding with this
simplification, and utilizing the symmetry of the aver-
aged leakage function, η̂(o, w) = η̂(−o, w), we introduce
the spectral efficiency factor, Ψ(w):

Ψ(w) ≡ η̂2(0, w) + 2η̂2(1, w) + · · · . (D6)

This factor serves as a fundamental metric for the effi-
ciency of signal power recovery in the presence of spectral
leakage. It is crucial to distinguish between energy con-
servation and statistical sensitivity:

• Energy Conservation (Linear Sum): The
spectral leakage function itself is normalized, im-
plying that the total signal energy is conserved
regardless of how it is distributed across the fre-
quency bins (

∑
κ η̂[κ] = 1).

• Statistical Dilution (Squared Sum): However,
the detection statistical significance scales with the
sum of squares of these factors. As the signal power
disperses (smears) into more sidebands due to an
increasing widening factor w, the sum of squares
inevitably drops below unity (Ψ(w) < 1).

Therefore, Ψ(w) represents the effective collection effi-
ciency. It reflects the inevitable penalty incurred by
spreading signal power across multiple noise-filled fre-
quency bins. Even if a search algorithm were to sum
the signal over an infinite bandwidth to recover the
power, the simultaneous accumulation of noise variance
from these additional bins results in a net loss of statis-
tical significance compared to a perfectly concentrated
monochromatic signal (where Ψ = 1).

Practical search algorithms must truncate this summa-
tion to a finite track width. The decision to restrict the

analysis to the anchor bin and its immediate neighbors
(|κ| ≤ 1, i.e., a 3-pixel track) is justified by the rapid spec-
tral decay characteristic of standard window functions
(e.g., Tukey or Hann). As illustrated in Fig. 3, the signal
energy is highly localized: the central anchor bin (κ = 0)
captures the dominant fraction of the power, while the
first sidebands (κ = ±1) account for the vast majority
of the remaining leakage. Consequently, extending the
track width beyond 3 pixels yields diminishing returns.
The contribution from higher-order sidebands (|κ| ≥ 2)
provides a negligible improvement in the efficiency fac-
tor Ψ(w), whereas including them linearly increases the
computational overhead (specifically, memory bandwidth
and storage). Thus, the 3-pixel configuration represents
the optimal trade-off between maximizing signal recovery
fidelity and maintaining computational efficiency.

3. Generalization to Template-Signal Mismatch

The preceding analysis assumed a perfect alignment
where the integer bin index κ is defined relative to the
true signal frequency. In a practical search utilizing a
template bank, a continuous frequency offset inevitably
exists between the template track, ft,i, and the true sig-
nal track, fr,i.
Let fc,i denote the instantaneous central frequency of

the signal for the i-th segment. The normalized frequency
offset between the true signal and the template, in units
of frequency bins (fbin = 1/TDFT), is given by:

oi =
fr,i − ft,i
fbin

. (D7)

To analyze this scenario, we distinguish between quanti-
ties derived from the template parameters (subscript t)
and those intrinsic to the real signal (subscript r).
The detection weights, ωi,k, are pre-calculated based

on the template trajectory:

(ωi,k)t ∝ (Li)t(η̂i[κ])t, (D8)
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where (η̂i[κ])t is the averaged leakage factor evaluated at
the template’s integer bin offset κ.
The actual signal contribution, λ[i, k], however, de-

pends on the true signal’s leakage into the bins defined
by the template grid. The received power is governed by
the continuous offset between the bin center and the real
signal frequency. This is expressed as:

(λ[i, k])r = (Li)r(η(oi, wi))r. (D9)

Here, we conceptualize the signal contribution in terms
of the mismatch offset oi. Substituting these definitions
into the fundamental moments, the generalized mean of
the CR becomes:

µCR =
1

2

∑
T (Liη̂i[κ])t · (Liη̂(oi, wi))r√∑

T (Liη̂i[κ])2t
. (D10)

Similarly, the variance generalizes to:

σ2
CR = 1 +

∑
T (Liη̂i[κ])2t · (Liη̂(oi, wi))r∑

T (Liη̂i[κ])2t
. (D11)

These generalized expressions quantify the search per-
formance for any arbitrary offset oi. They serve as the
theoretical basis for calculating the Fitting Factor (FF)
and Mismatch (MM), enabling the rigorous construction
of a template bank that guarantees high detection prob-
ability across the continuous parameter space.

Appendix E: Scaling Laws and the Maximum
Detectable Distance

A critical characteristic of the proposed detection
statistic is the scaling behavior of its moments—the mean
(µCR) and variance (σ2

CR)—with respect to the number
of analyzed time segments, N . This scaling directly gov-
erns how the search sensitivity improves with accumulat-
ing observation time.

To elucidate this behavior, we rewrite the cumulative
sums over the track set T in terms of segment-averaged

quantities. Let ⟨X⟩N ≡ 1
N

∑N
i=1Xi denote the arith-

metic mean of a quantity over the N segments.
First, consider the mean of the Critical Ratio. Factor-

ing out N , the expression becomes:

µCR =
1

2

√∑
T

(Liη̂i[κ])2 =
1

2

√
N
〈
(Liη̂i[κ])2

〉
N
. (E1)

Assuming the average signal power per segment remains
roughly constant over the observation, this implies that
the expected statistical significance grows with the square
root of the number of segments:

µCR ∝
√
N. (E2)

This
√
N growth is the hallmark of semi-coherent integra-

tion strategies (often referred to as incoherent summation

of coherent powers), reflecting the stochastic accumula-
tion of signal power.
In contrast, the variance of the CR statistic exhibits a

fundamentally different scaling behavior. Expressing the
sums in terms of averages yields:

σ2
CR = 1 +

∑
T (Liη̂i[κ])3∑
T (Liη̂i[κ])2

= 1 +
N
〈
(Liη̂i[κ])3

〉
N

N
〈
(Liη̂i[κ])2

〉
N

= 1 +

〈
(Liη̂i[κ])3

〉
N〈

(Liη̂i[κ])2
〉
N

.

(E3)

Crucially, the factor of N cancels out in the fractional
term. Consequently, the variance is an intensive quan-
tity with respect to observation time. For weak signals
(where the higher-order terms are small), σ2

CR remains
close to unity, effectively independent of the observation
duration.
This divergence in scaling behaviors—the unbounded

growth of the mean (∝
√
N) versus the asymptotic

constancy of the variance (∝ N0)—is the engine of
the search’s sensitivity. As the observation time N in-
creases, the signal distribution shifts progressively away
from the noise background without broadening signifi-
cantly, thereby exponentially suppressing the false dis-
missal probability.
Finally, we connect this result to the astrophysical

horizon. From the definition of the total power statis-
tic, we know that µCR scales quadratically with distance:
d ∝ √

µCR. Combining this with Eq. (E2), we arrive at
the fundamental scaling law for the maximum detectable
distance:

dmax ∝ N1/4. (E4)

This fourth-root scaling law confirms that extending the
observation duration is a robust strategy for expanding
the search volume (V ∝ d3 ∝ N3/4) for mini-EMRI sys-
tems.

Appendix F: Effective Detection Volume and
Averaged Antenna Response

Eq. (32) defines the maximum detectable distance dmax

under a specific set of extrinsic parameters (sky loca-
tion and polarization). However, the astrophysical per-
formance of a search pipeline is best characterized by its
sensitivity to a population of sources distributed isotrop-
ically throughout the universe. To quantify this, we tran-
sition from the horizon distance to the effective detection
volume Veff . This necessitates averaging the detection
probability over all extrinsic variables: sky position (α, δ)
and source orientation (ψ, ι).
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The dependence on these geometric parameters is en-
capsulated within the detector’s antenna pattern func-
tion, Q(t;α, δ, ψ, ι). The averaging procedure begins by
exploiting the separation of timescales. Since the intrin-
sic signal parameters (frequency and amplitude) evolve
on timescales much longer than the Earth’s rotation pe-
riod (T⊕ ≈ 23.93 h), we can perform a time-average over
one sidereal day. This operation effectively decouples the
rapid antenna pattern modulation from the secular signal
evolution. A key consequence of this averaging is that the
dependence on the source’s right ascension (α) becomes
degenerate, reducing the effective sky-dependence to a
function of declination (δ) only.

Formally, the effective volume is constructed by inte-
grating the detectable volume element over the full pa-
rameter space. We first define the volume for a fixed

source orientation, V (ψ, ι), by integrating over the celes-
tial sphere:

V (ψ, ι) =

∫ 2π

0

dα

∫ 1

−1

d(cos δ)

∫ dmax(δ,ψ,ι)

0

r2dr

=
1

3

∫ 2π

0

dα

∫ 1

−1

d(cos δ) d3max(δ, ψ, ι).

(F1)

The final effective detection volume, Veff , is obtained by
averaging this quantity over all possible polarization an-
gles ψ and inclination angles ι:

Veff =
1

4π

∫ 2π

0

dψ

∫ 1

−1

d(cos ι)V (ψ, ι). (F2)

Combining these integrals yields the complete expression for the effective detection volume:

Veff =
1

12π

∫ 2π

0

dψ

∫ 1

−1

d(cos ι)

∫ 2π

0

dα

∫ 1

−1

d(cos δ) d3max(δ, ψ, ι). (F3)

This scalar metric provides a robust quantification of the pipeline’s global sensitivity. It is often convenient to express
this volume in terms of an effective distance, deff , defined as the radius of a Euclidean sphere with volume Veff :

deff =

(
3Veff
4π

)1/3

. (F4)

While Eq. (F3) is exact, it is computationally intensive. We can simplify it conceptually and practically by encap-
sulating the entire geometric averaging process into a single, scalar factor: the fully-averaged antenna pattern factor,
denoted as ⟨Q⟩. This factor represents the detector’s effective response to an isotropic source population. For the ΣR
statistic (where sensitivity scales as the fourth root of power accumulation, see Appendix E), this factor is defined as:

⟨Q⟩ΣR =
〈
⟨Q(t)4⟩3/4t

〉1/3
sky,orient

. (F5)

Numerical evaluation of this integral yields the following characteristic values for the current detector network:

⟨Q⟩LIGO H
ΣR ≈ 0.4590, ⟨Q⟩LIGO L

ΣR ≈ 0.4604, ⟨Q⟩Virgo
ΣR ≈ 0.4597. (F6)

By factoring out this geometric term, the effective distance can be expressed in a modular form that separates
geometry from signal strength:

deff = ⟨Q⟩ΣR
[√

2 erfc−1(2Pfa) +
√
2 erfc−1(2Pfd)

]−1/2
[
1

4

∑
T
h4e,i

T 2
DFT

S2
n,i

η̂2i [κ]

]1/4
. (F7)

For comparison, the conventional Hough transform pipeline exhibits a different sensitivity scaling due to its binary
thresholding nature. The corresponding averaged factor for the Hough transform is derived as:

⟨Q⟩Hough =
〈
⟨Q(t)2⟩3/2t

〉1/3
sky,orient

. (F8)

Numerical integration yields effective response factors for the Hough pipeline: ⟨Q⟩LIGO H
Hough ≈ 0.4207, ⟨Q⟩LIGO L

Hough ≈
0.4191, and ⟨Q⟩Virgo

Hough ≈ 0.4198.

Appendix G: Frequency layering strategy

To rigorously determine the optimal frequency layering
configuration, we first establish a continuous metric for

the accumulation of statistical significance. We observe
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that the squared expectation of the Critical Ratio, µ2
CR,

behaves as an additive quantity. For a search trajectory
T composed of disjoint sub-tracks T1 and T2, the total
significance satisfies:

µ2
CR(T1 + T2) = µ2

CR(T1) + µ2
CR(T2). (G1)

Substituting the definition of µCR from Eq. (28) and ex-
panding the terms for the 3-pixel track configuration, the
total squared significance over N segments is:

µ2
CR =

1

4

∑
(i,k)∈T

(Liη̂i[κ])2

=
1

4

N∑
i=1

L2
i

(
η̂2i [0] + 2η̂2i [1]

)
=

1

4

N∑
i=1

h40,iQ
4
i

T 2
DFT

S2
n,i

[
η̂2(0, wi) + 2η̂2(1, wi)

]
.

(G2)
Here, we assume the standard condition of 50% temporal
overlap between adjacent segments. In the continuum
limit, the summation over discrete segments can be ap-
proximated by a time integral, where the segment density
is given by dN/dt = (TDFT/2)

−1. Applying the fully-
averaged antenna pattern factor ⟨Q⟩ΣR, the expression
transforms to:

µ2
CR ≈ 1

4
⟨Q⟩4ΣR

∫
h40(t)T

2
DFT

S2
n(f(t))

Ψ(w(t))
2

TDFT
dt

= 2⟨Q⟩4ΣR
∫
h40(f(t))

TDFT

S2
n(f(t))

Ψ(w(t)) dt,

(G3)

where Ψ(w) ≡ η̂2(0, w)+2η̂2(1, w) represents the spectral
efficiency factor for the default 3-pixel track configura-
tion, as formally defined in Eq. (D6).

Finally, to facilitate optimization in the frequency do-
main, we perform a change of variables from time t to
frequency f . Using the stationary phase relationship
dt = (df/dt)−1df = ḟ−1df , we arrive at the spectral rep-
resentation of the sensitivity:

µ2
CR =

1

4
⟨Q⟩4ΣR

∫ fmax

fmin

h40(f)
TDFT

S2
n(f)

Ψ
(
ḟT 2

DFT

)
ḟ−1 df.

(G4)
Based on this integral form, we can formally define the

Sensitivity Density ρCR(f, TDFT), which quantifies the
contribution of each unit frequency interval to the total
squared detection statistic:

ρCR(f, TDFT) ≡
d(µ2

CR)

df

=
1

4
⟨Q⟩4ΣR h40(f)

TDFT

S2
n(f)

Ψ
(
ḟT 2

DFT

)
ḟ−1.

(G5)
This density function reveals the fundamental trade-off:
increasing TDFT linearly increases the SNR accumulation
(the linear TDFT term), but eventually suppresses the ef-

ficiency factor Ψ(w) as the widening w = ḟT 2
DFT grows

large. The optimal frequency layering strategy is thus
equivalent to finding the function TDFT(f) that maxi-
mizes this density at every frequency f .

For a monotonically evolving signal (where the fre-
quency f(t) is a strictly increasing function of time),
the total time-frequency trajectory can be uniquely parti-
tioned intoN disjoint frequency layers. Consider a search
configuration partitioned into N distinct frequency lay-
ers. This segmentation is defined by a set of N − 1 criti-
cal frequencies, denoted as {fc,1, fc,2, . . . , fc,N−1}, which
divide the total bandwidth [fmin, fmax] into contiguous
intervals. Within the n-th layer, a specific coherent inte-
gration time Tn is applied.

The total squared statistical significance is obtained by
summing the integral contributions from each layer:

µ2
CR =

N∑
n=1

µ2
CR(layer n)

=

∫ fc,1

fmin

ρCR(f, T1) df +

∫ fc,2

fc,1

ρCR(f, T2) df + · · ·

+

∫ fmax

fc,N−1

ρCR(f, TN ) df.

(G6)
This formulation transforms the optimization problem
into finding the optimal set of transition frequencies
{fc,n} and coherent times {Tn} that maximize this global
sum.

It is straightforward to show that the optimal critical
frequency, fc,n, separating two adjacent layers (with in-
tegration times Tn and Tn+1) is determined solely by the

signal’s frequency derivative ḟ .

The optimal transition point occurs where the sensi-
tivity densities of the two configurations intersect, i.e.,
where switching from Tn to Tn+1 yields no discontinu-
ities in sensitivity:

ρCR(fc,n, Tn) = ρCR(fc,n, Tn+1). (G7)

Substituting the definition of ρCR from Eq. (G5), we ob-
serve that the terms depending on the signal strength
h0(f) and the detector noise Sn(f) appear as common
factors on both sides and explicitly cancel out. The con-
dition simplifies to a transcendental equation involving
only the integration times and the frequency derivative:

TnΨ
(
ḟ(fc,n)T

2
n

)
= Tn+1Ψ

(
ḟ(fc,n)T

2
n+1

)
. (G8)

This result reveals a fundamental universality in the
search design: the optimal frequency layering is governed
exclusively by the interplay between the coherent gain
(linear in T ) and the spectral leakage (encapsulated in
Ψ), independent of the specific spectral shape of the noise
or the source.
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Appendix H: Statistical Independence and Pixel
Correlations

In the derivation of the ΣR statistic (Eq. (23)), we
posited the simplifying assumption that the power ra-
tios R[i, k] behave as mutually independent random vari-
ables across the entire time-frequency plane. While this
hypothesis affords analytical tractability, it represents
an idealization. In practice, the inherent mathematical
structure of the STFT inevitably induces non-vanishing
statistical correlations between pixels (i, k) and (j, l) with
sufficiently small separation. These correlations arise
from two primary mechanisms:

1. Spectral Correlations (Frequency Axis): The
application of a window function W [n] imposes an
amplitude modulation on the time-domain data. In
the frequency domain, this manifests as spectral
leakage: the windowing process convolves the noise
spectrum with the window’s kernel, thereby smear-
ing noise power across adjacent bins.

2. Temporal Correlations (Time Axis): These
correlations arise primarily from the use of overlap-
ping time segments (e.g., 50% overlap), where ad-
jacent STFT columns share common time-domain
data samples. Furthermore, even in the absence of
physical overlap, the intrinsic temporal structure
of the detector noise (i.e., its non-white nature and
finite correlation length) introduces residual statis-
tical coupling between consecutive time segments.

To rigorously characterize these effects, we construct
the covariance structure of the spectrogram. For station-
ary Gaussian noise, the correlation in the time-frequency
plane is mathematically governed by the properties of the
window function and the segment overlap.

First, we examine the correlation between the com-
plex DFT spectrum of the i-th and j-th time segments,
denoted as x̃i[k] and x̃j [l]. The expectation of their cross-
product is:

E
[
x̃i[k]x̃

∗
j [l]
]
= E

[(
1

N

N−1∑
n=0

W [n]xi[n]e
−i 2πN kn

)(
1

N

N−1∑
m=0

W [m]xj [m]ei
2π
N lm

)∗]

=
1

N2

N−1∑
n=0

N−1∑
m=0

W [n]W [m]E
[
xi[n]xj [m]

]
e−i

2π
N (kn−lm).

(H1)

Let Rij [n,m] ≡ E[xi[n]xj [m]] denote the cross-
correlation matrix of the time-domain noise between seg-
ments i and j. We further define a windowing mask ma-
trix, M [n,m] ≡W [n]W [m]. We can define two auxiliary
spectral correlation matrices: Cij (conjugate covariance)
and Dij (non-conjugate covariance/relation):

Cij [k, l] ≡ E
[
x̃i[k]x̃

∗
j [l]
]
,

Dij [k, l] ≡ E
[
x̃i[k]x̃j [l]

]
.

(H2)

These terms can be elegantly expressed as spectrum of
the 2D DFT of the windowed time-domain correlation
matrix:

Cij [k, l] = DFT2 {M ⊙Rij} [k,−l],
Dij [k, l] = DFT2 {M ⊙Rij} [k, l],

(H3)

where ⊙ denotes the element-wise (Hadamard) product:

(M ⊙Rij)[n,m] =M [n,m] ·Rij [n,m]. (H4)

We now derive the covariance of the power ratio R
across distinct time-frequency bins. We first consider the
case of pure noise. Our goal is to calculate the covariance
Cov(R[i, k], R[j, l]).
By definition, the covariance of the normalized vari-

ables is scaled by their respective normalization factors:

Cov (R[i, k], R[j, l]) =
Cov

(
|ñi[k]|2, |ñj [l]|2

)
⟨|ñi[k]|2⟩⟨|ñj [l]|2⟩

. (H5)

To evaluate the numerator, we recall the definition
Cov(X,Y ) = E[XY ]−E[X]E[Y ]. We invoke Wick’s The-
orem for zero-mean complex Gaussian variables to de-
compose the fourth-order moment E[|ñi|2|ñj |2] into the
sum of pairwise expectations:

E
[
|ñi|2|ñj |2

]
= E[|ñi|2]E[|ñj |2]

+
∣∣E(ñiñ∗j )∣∣2 + |E(ñiñj)|2 .

(H6)

When substituting this expansion back into the covari-
ance expression, the first term on the right-hand side
(E[|ñi|2]E[|ñj |2]) exactly cancels with the product of the
means. This leaves only the cross-correlation terms. Us-
ing the Cij andDij notation defined previously, we arrive
at the final generalized covariance expression:

Cov (R[i, k], R[j, l]) =
|Cij [k, l]|2 + |Dij [k, l]|2

⟨|ñi[k]|2⟩⟨|ñj [l]|2⟩
. (H7)

The above derivation assumes pure noise. In the pres-
ence of a signal (s̃ ̸= 0), R follows a non-central distribu-
tion. While exact analytical expressions for the covari-
ance in the signal-present regime can be derived following
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an analogous methodological framework—specifically by
expanding the fourth-order moments of the non-central
variables—the resulting formulae are algebraically pro-
hibitive to display. They involve multiple cross-terms
representing the interaction between the deterministic
signal amplitude and the stochastic noise background.
Consequently, we omit these explicit forms for the sake of
brevity. However, fundamentally, the correlation struc-

ture remains governed by the same windowing and over-
lap mechanisms identified in the noise-only analysis.
Finally, we explicitly quantify the impact of these cor-

relations on the statistics of the aggregate metric ΣR.
While the linearity of the expectation operator ensures
that the mean µΣR remains unbiased regardless of cor-
relations, the variance σ2

ΣR requires a correction term to
account for the covariance between contributing pixels:

σ2
ΣR =

∑
(i,k)∈T

ω2
i,kσ

2
R[i, k] +

∑
distinct pairs

2ωi,kωj,lCov(R[i, k], R[j, l])

= σ2
ΣR,0 +∆σ2

corr.

(H8)

Here, the second summation runs over all distinct pairs of
pixels in the track set. The factor of 2 explicitly accounts
for the symmetry of the covariance matrix (Cov(X,Y ) =
Cov(Y,X)). The term σ2

ΣR,0 denotes the variance de-
rived under the independence assumption, while the sec-
ond term captures the cumulative contribution of cross-
correlations. Since the windowing-induced correlations
are predominantly positive, this correction term leads to
variance inflation (i.e., σ2

ΣR > σ2
ΣR,0).

In the regime of weak correlations (e.g., standard 50%
temporal overlap), this inflation is minor. Consequently,
for the calculation of the maximum detectable distance

dmax, where we adopt the approximation σCR ≈ 1, the
impact of this correction is second-order and can be safely
neglected. However, Eq. (H8) serves as a crucial cau-
tionary principle: it dictates that one cannot arbitrar-
ily enhance sensitivity by simply increasing the density
of STFT segments within a fixed observation duration.
Excessive temporal overlap (e.g., ∼ 100%) would drasti-
cally increase the number of correlated cross-terms. This
would cause the background variance to grow faster than
the signal accumulation, leading to diminishing returns
or even a degradation in the statistical significance.
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