WG2 (Design, Fabrication, Assembly) Summary

- Design of corrugated tube well advanced (SF 4-5 accounted for)
 - Advanced modelling available for the CE-ET community (parametric study/equivalent 1D model)
- Thick wall <u>straight tube</u> viable provided passivation surface (carbon steel).
 - Innovative design based on counter-spiral reinforcement stiffeners well advanced (ferritic steel)
- Conical scarf fillet weld appears promising for the circumferential welding
- For leak testing, a trade off between cost and risk relies on time constants and cycle times. It entails a very significant component level leak testing.
- Extensive weld testing of sleeve has validated the design and fabrication
- MACBETH program is a significant project development for industrialization and full validation of ET beam tube requirements
- Cork+bio-phenolic appears as a promising solution for thermal insulation at a reduced cost (1/2 cost)
- Significant progress for induction heating system for baking that looks scalable.

WG2 Open Issues

- Better requirements definition of modal frequencies and damping
- Better requirements on particle contamination (particles falling from beam tube)
- How to manufacture corrugated tubes
- How to manufacture a more robust joint for circumferential weld (tolerances, dust control)
- How deep to dig at the end of the CE?? To avoid Newtonian noise!

Additional Summaries

- Design specifications & tube design overview for CE Dennis Coyne
 - Emphasized reliability is far more important than minimizing cost; Must comply with ASCE, ASME codes with high margins to ensure 50 yr life
 - Proposes requirement < 1 UHV leak per 10 years (@ 10^-9 Torr-L/s)
 - Tube and/or baffle seismic isolation could be a significant cost driver; need better requirement definition
 - Proposed support arrangements for configurations with and without bellows
 - Points out that we have 4 viable tube options from a structural stand-point:
 - Thick-walled, unstiffened (carbon steel)
 - Thin-walled, ring stiffened
 - Thin-walled, continuously corrugated (U-profile)
 - Thin-walled, sparsely corrugated (sine-profile)
 - All designs are stiffness critical (for buckling margin and acceptable sag), and all
 materials of interest have similar elastic modulus, so design for lowest yield material
 (304/304L) and choose material on the basis of other considerations

- Vacuum Tube Design for the Einstein Telescope (Alexandre Lacroix, CNRS LAPP)
 - Welded external stiffening helix with low helix angle
 - Joining 2 tubes with reverse chirality (counter-wound stiffener) with a bellows
 - Bellows is supported with a "sliding support" with rotationally unclamped rings
 - Elegant design, but suggest flextural arrangement of bellows support to avoid unclamping for bake and then reclamping after bake
- Overview of ET pilot sector circumferentially corrugated design (Marco Marrone)
 - Column stability for hanging structure (Aramid fiber suspension supports)
 - Helical corrugation drawbacks (buckling, ext-torsion coupling)
 - 1D simplified beam model for computational efficiency
- Optimized corrugated tube design for CE (Alberto Franco)
 - Explained why sinusoidal corrugation is preferred
 - Explained how to perform the parametric analysis in Ansys (I/O parameters)

- Circumferential Joint (Dennis Coyne)
 - Stress intensity of radial lip joint could exceed threshold for type I crack initiation
 - Recommend conical scarf joint
- UHV Leak risk of convolutions (Dennis Coyne)
 - LEP operational expansion joint failure rate is unacceptably high
 - Speculations of cyclic fatigue or stress corrosion cracking explanation
 - If real argues for corrugated tube rather than discrete bellows
- Design proposal of tube supports, end caps, and pump port spools for CEBEX/CE (Anna Iudintseva)
 - Parametric design
 - Proposed support design, welded spools, bolted end caps
 - Dig a 10m hole under the end of the BT to mitigate Newtonian noise?

- Beamtube Principal Cost Factors (Dennis Coyne)
 - Presented Rai Weiss's breakdown of CBI/LIGO costbook for the LIGO BT
 - Used the underlying CBI cost data to show that CBI's design was close to minimum cost
 - (Alberto also ran an Ansys parametric analysis of ring-stiffened BT and found CBI's design near optimal)
- MACBETH (Fabien Quinten, NIKHEF)
 - MAnufacturing and Cleanliness of Beampipe for ET in High-vacuum
 - Industrialize, cost-efficient, production & installation facility
 - 5 companies involved + Nikhef
 - ~1.5 mm, circumferentially corrugated BT, AISI 441 (ferritic)
 - Robotic, in-tube RGA sampling for surface contamination

- Leak detection of the ET Pilot Sector beam tubes (Purnalingam Revathi, CERN)
 - He bagging around each weld joint for pilot, for each tube segment
 - Component, sub-sector, sector level leak testing
 - Outlined Max, Mid, Min selective testing strategy vs risk & cost
 - Adopting "mid strategy", but dynamically change test frequency as program evolves
 - Based on LIGO experience, encouraged to consider the long time constants and cycle times for sub-sector & sector testing, for clearing out He after testing, as well as the unacceptability of more than 1 leak per volume
 - Also encouraged to consider robotic testing

- Weld design to join chambers (Roxane Misler, CERN)
 - Sleeve (open & closed, 4 & 2 mm thick) installed with manual TIG fillet welds on 441 test chambers
 - Monitored airbourne (generally ISO 7 to 8 during steps) & surface dust contamination
 - LIGO will share cleanliness protocols & surface test procedures (may have some applicability)
 - Metallographic qualification of sample welds
 - Vacuum test & check for virtual leak found leak & successfully repaired
 - Closed 2 mm thick sleeve with 1 mm gap better, used on ET pilot sector

- Welding Techniques (Roxane Misler, CERN)
 - Butt, fillet, lip welds auto, manual repairability
 - Roundness tool clamped to the end of each tube
 - (LIGO used hydraulic tool to expand and circularize tube ends)
 - Presented various joint geometries for the circumferential joint designed to minimize contamination, some of which can be merged with the bellows or stiffener, with a single field weld
 - (Discussed the observation by the light baffling group that the particulate contamination problem is over-specified/stated)
 - Plan to use orbital TIG welder for testing lip weld geometry eventually can orbitally weld fillet for ET

- Thermal insulation for GWDs beam pipe vacuum systems (Carlo Scarcia, Karl Owens; CERN)
 - ~20M euro for mineral wool is the default/baseline but dirty
 - Aerogel alternative is expensive and not durable
 - Polyurethane foam is durable, lightweight, but off gasses and has a lower operating temperature (80 to 120C)
 - Initiated project to develop a new, sustainable insulation for ET
 - Cork+bio-phenolic (~10M euro)
 - Fire retardant modified PIR
 - Sheep wool is also being explored
 - Installation in ET-PS in 2026 Q3
 - Deliverable includes disclosure of additives, chemical composition must evaluate potential corrosive risk to tube

- Overview of Potential Manufacturing Techniques for Corrugated Beamtube (Peter van der Heijden, VDL)
 - CERN has experience with corrugated pipe, comprised of 441 ferritic
 - Working on a prototype of > 3m length
 - Three basic methods:
 - Slip roll in short lengths limited by coil width
 - Form from 2 coils with 2 longitudinal welds
 - Helically weld with skelp width equal to coil width (preferred)
 - Then either weld on stiffeners, or form circumferential corrugations by hydroforming (expensive); rolling forming has contamination & thinning risks
 - Focused on process control and industrialization (QA, measurement after each process step)
 - Orbital TIG welding, K-TIG welding, Vacuum laser welding
 - Possible methods for sealing end caps for tube segment leak testing

- Induction Bakeout Experiment at LIGO Caltech (Melina Fuentes-Garcia, LIGO)
 - Particularly good method for carbon steel (highly magnetically permeable and resistivity too low for practical ohmic heating through the tube)
 - RF System translated on a rail system along technology demonstrator tube
 - System baked @150C, then vented to atm, then 80C bake recovers UHV with DR modeling; will be tested in LTREX system
 - Translating (zone heating) works (10^-10 mbar)
 - LTREX experiment planed with purging with dry gas (ppb H2O) using integrated circuit foundry filters
 - Design for full scale (in particular getting around "obstacles" (pumps, supports, etc.) is needed for CE
 - The pipeline industry has full-scale systems that can navigate around obstacles
 - (Note that oil/pipelne industry uses Heat Trace Systems capable of 150C with long circuit lengths - up to 50 km)

- Alternative Method for Large Vacuum Systems Bakeout (Freek Molkenboar, TNO)
 - Prototype plasma system (RF+DC, 0.3m dia) to test effectiveness vs length to ~4m
 - Intent is to permanently install behind baffles (at upto 50m spacing?) and use to remove water