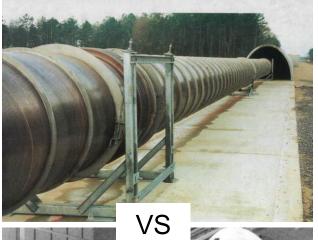
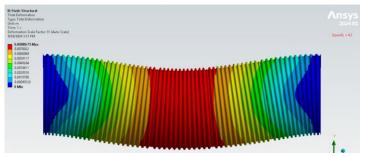


Scope



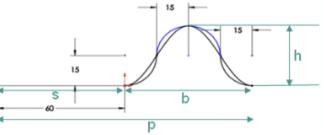
- ☐ Corrugated design: Why?
- ☐ Convolution geometry: Parameters & Selection
- ☐ FEA Model:
 - ☐ Geometry & Python Script
 - □ BC's + Set Up
 - Results
- Parametric runs
- Design Explorer (DX)
 - □ Results + Response Surfaces
- Optimization

Corrugated Tube: WHY!?


VS

- Original LIGO:
 - □ 3.2 [mm] wall thickness x 20 [m] x 1.2 [m]
 - Stiffener rings (welded)
 - □ Expansion joints (40 [m])
- Corrugations could help with:
 - Improving buckling response (NO stiffener rings)
 - □ Absorbing thermal expansion (NO/Less exp. Joints)
 - Thinner wall
- 90's vs 2020's: better computational &
 manufacturing processes to help exploring

COSMIC EXPLORER


Previous Corrugated Tubes

- GEO 600: Hung from the ceiling → For 40kms?!?!
- Supports are also to be taken into account
- Continued corrugation: too slinky if supports are not placed close enough
- Trade-off: singular convolution modules: Flat span + Corrugation

Convolution Geometry: Shape?

□ Deflection (Sag):
$$y = -\frac{FL^3}{48EI}$$

□ Global Buckling (Euler):
$$P_{cr} = \frac{\pi^2 EI}{(KL)^2}$$

$$I = \pi R_m^3 t$$

 $\cdot R_m$: Mean radius

·t: Thickness

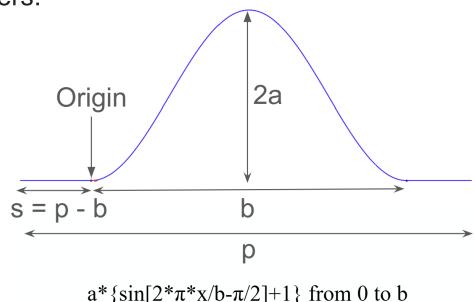
Convolution Geometry: Sinusoidal

$$\frac{1}{s_4} = \frac{6 \cdot P + h^2}{S + 3h} = \frac{R}{Lmm} = \frac{1}{\sqrt{22}} \times \frac{1}{\sqrt$$

- $\frac{1}{16} = \frac{6 \cdot P + \frac{h^2}{2}}{5 + \sqrt{5} \cdot h} = \frac{507}{100} \rightarrow -\frac{1}{100} = \frac{7}{100} = \frac{1}{100} = \frac$
- Numerical values for:
 - □ h = 30 [mm]
 - □ P = 120 [mm]

$$\overline{C}_{cr} = \frac{6p + h^2}{15 + 71 h} = 519 \rightarrow -4 \text{ y.} \rightarrow -14 \text{ y.}$$

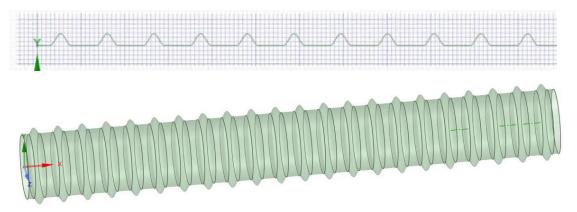
$$rac{1}{s_{in}} = \frac{6 \cdot P + h}{87.82*} = 542 \#$$


☐ The sinusoidal corrugation provides a better performance

Convolution Geometry

- □ Sinusoidal Corrugation Parameters:
 - Amplitude: a
 - Period: b
 - Pitch: p
- Beamtube Parameters:
 - Thickness: t
 - □ Length: L (*)

4 Parameters: How to find an "optimal" space? Through Parameter Correlation!



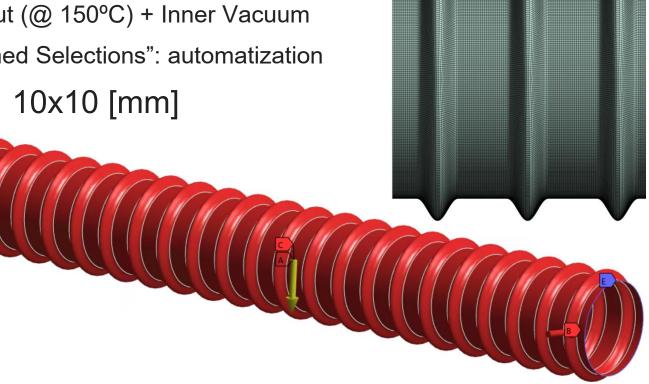
FEA Model: Geometry Definition

□ Initial geometry: 2D Sketch

Final geometry: 3D Shell

- A Python Script is needed to generate the geometry from scratch every run
- □ Otherwise, the input parameters (a, b, p) cannot be modified once the 2D sketch has been revolved and became a 3D Shell body.

FEA Model: BC's & Configuration

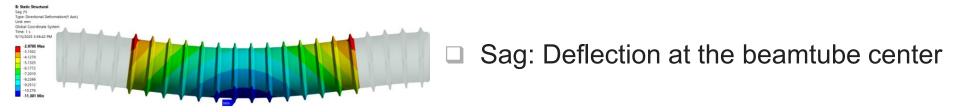

- Boundary conditions implemented:
 - Gravity + Bakeout (@ 150°C) + Inner Vacuum
 - All through "Named Selections": automatization
- Mesh defined: 10x10 [mm]

B: Static Structural

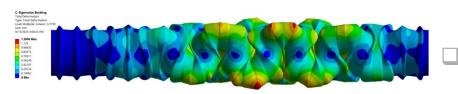
Static Structural Time: 1. s 9/15/2025 3:13:54 PM

A Standard Earth Gravity: 9806.6 mm/s2

- Pressure: -0.1013 MPa
- Thermal Condition: Both: 150. °C
- Simply Supported X=0: 0. mm
- Simply Supported X=END: 0. mm

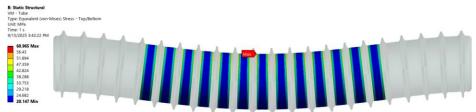


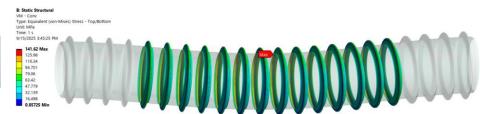
FEA Model: Results to observe

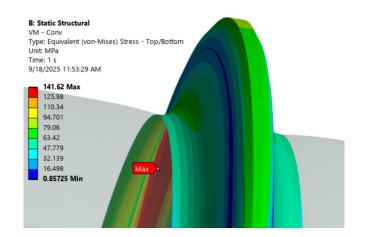


The following results were set as Output Parameters

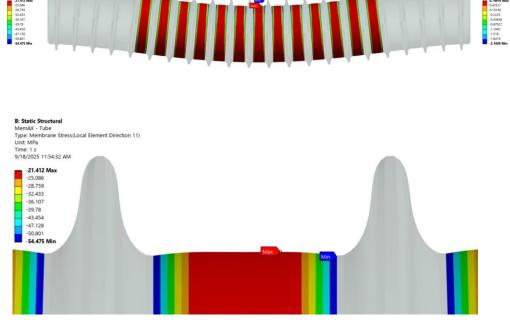
Buckling Factor: Global buckling

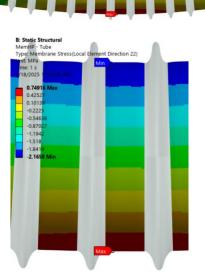



FEA Model: Results to observe


The following results were set as Output Parameters

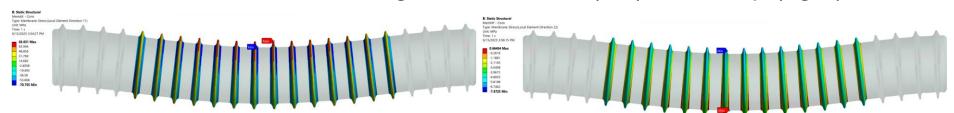
Von-Mises: Max Stress at flats & convolutions, for a better understanding

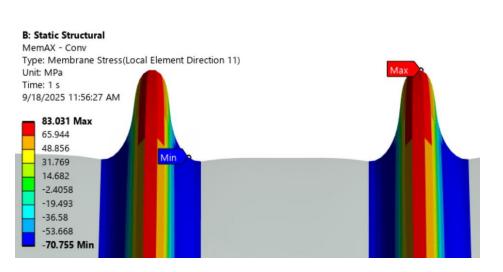

B: Static Structural MemAX - Tube Type: Membrane Stres Unit MPa Time: 1 s 9/15/2025 3:51:18 PM

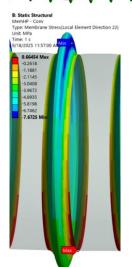

FEA Model: Results to observe

The following results were set as Output Parameters

■ Membrane: Max/Min at flats for Axial (left) and Hoop (right)




FEA Model: Results to observe



The following results were set as Output Parameters

■ Membrane: Max/Min at corrugations for Axial (left) and Hoop (right)

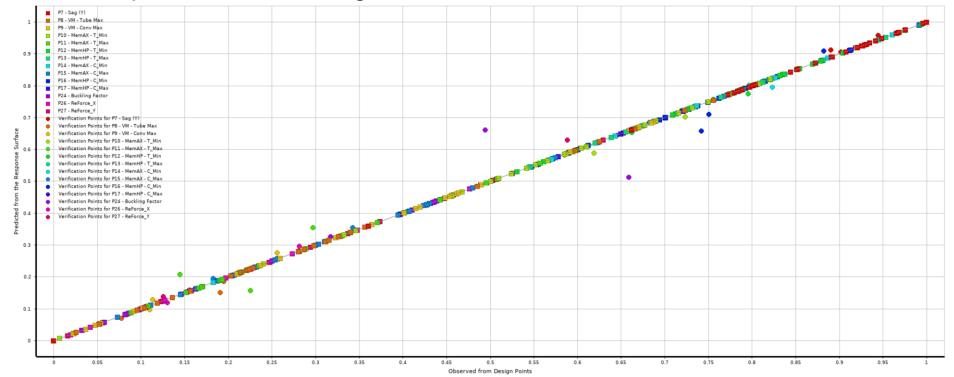
FEA Model: Results to observe

The following results were set as Output Parameters

□ To wrap-up: 14 output parameters total

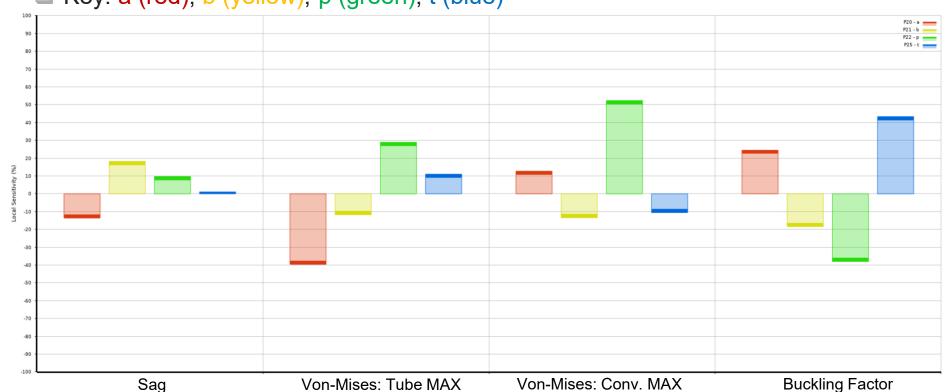
RESULT	PARAMETERS	LOCATION		
Sag (Y)	Min	Mid beamtube		
Force Reaction	X, Y	Ends		
Buckling Factor	Load Multiplier	Global		
Von Mises – Tube	Max	Central flat: boundary w conv		
Von Mises – Convolution	Max	Central conv: peak, inner face		
Tube – Membrane Axial	Min, Max	Central flat		
Tube – Membrane Hoop	Min, Max	Central flat		
Conv – Membrane Axial	Min, Max	Central conv: peak & valley		
Conv – Membrane Hoop	Min, Max	Central conv: valleys		

Parametric Runs: Creating a data pointcloud

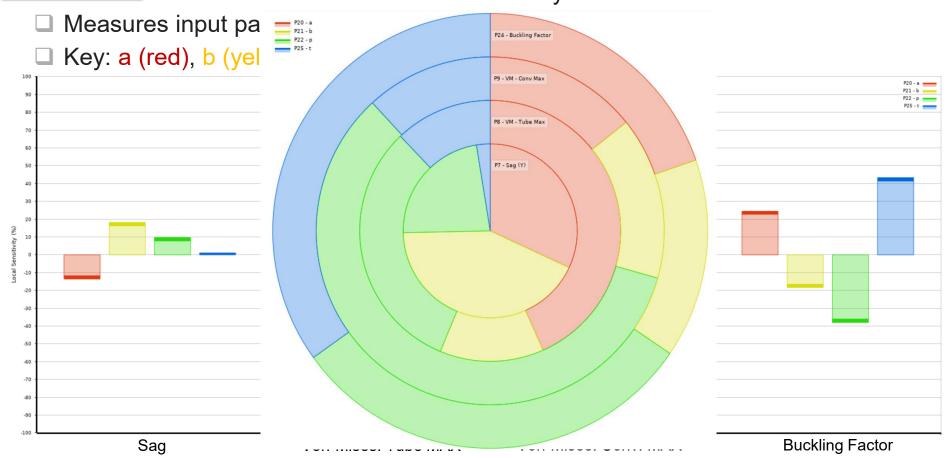

Outline	of All Parameters	92	2016	4
	A	В	С	D
1	ID	Parameter Name	Value	Unit
2	☐ Input Parameters			
3	☐ Geometry (A1)			
4	Ф Р20	a	58	mm
5	(p≀ P21	ь	215	mm
6	₿ P22	р	470	mm
7	☐ W Static Structural (B1)			
8	₿ P25	t	2.7	mm
*	New input parameter	New name	New expression	
10	☐ Output Parameters			
11	☐ W Static Structural (B1)			
12	p⊋ P7	Sag (Y)	-11.301	mm
13	p⊋ P8	VM - Tube Max	60.965	MPa
14	p⊋ P9	VM - Conv Max	141.62	MPa
15	P10	MemAX - T_Min	-54.475	MPa
16	p⊋ P11	MemAX - T_Max	-21.412	MPa
17	₽ P12	MemHP - T_Min	-2.1658	MPa
18	p⊋ P13	MemHP - T_Max	0.74916	MPa
19	p⊋ P14	MemAX - C_Min	-70.755	MPa
20	₽ P15	MemAX - C_Max	83.031	MPa
21	₽ 7 P16	MemHP - C_Min	-7.6725	MPa
22	p⊋ P17	MemHP - C_Max	0.66454	MPa
23	P⊋ P26	ReForce_X	7781.5	N
24	p⊋ P27	ReForce_Y	5577.4	N
25	☐ [2] Eigenvalue Buckling (C1)			
26	P24	Buckling Factor	3.7195	

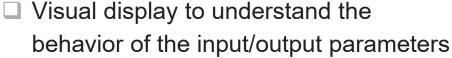
- Parameters Set: all parameters displayed
- Need to define range of study for input Par
 - a: 40 to 80 [mm], b: 120 to 240 [mm], p: 300 to 700 [mm]
 - t: 2 to 3.5 [mm]
- Need to define Design of Experiment Method
 - Central Composite Design: Face centered
 - This settles the way DX will select the Design Points to calculate so they properly cover the design space.
- Once all the DPs are done: Meta Model
- Surface type: Kriging, variable.
- This defines the algorithm used to study the correlation among DPs to create response surfaces (prediction) 15

- Goodness of Fit
- \square Explores R^2 in normalized values: Verification Points (X) vs. Predicted Points (Y)
- ☐ A few points off-axis: still a good & solid model

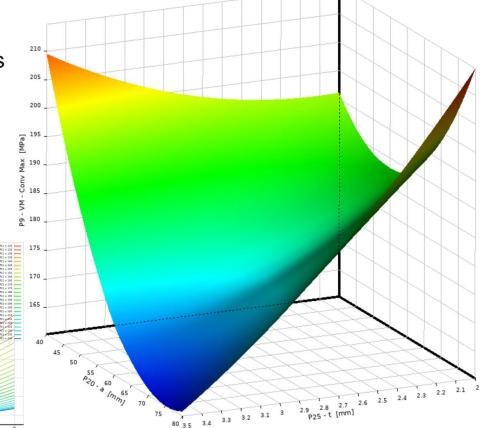


Local Sensitivity


- Measures input parameters impact on output parameters
- ☐ Key: a (red), b (yellow), p (green), t (blue)

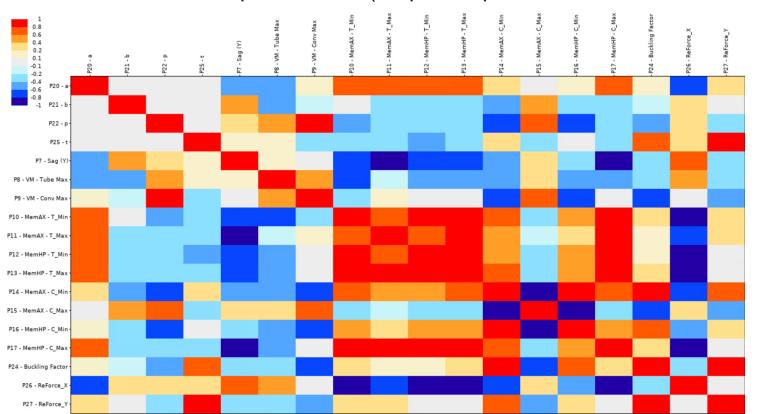


Local Sensitivity



Response Surfaces – 2D & 3D

- ☐ Allows 2 input (x, y) vs. 1 output (z)
- ☐ Rest of inputs: modifiable values
- Also, 2D graphs w isolines



Correlation Matrix

Interaction between ALL parameters (output/output included! → Trade-offs)

DX Optimization Tool

- □ Design Points & Verification Points calculated + Results checked: OK!
- DX will cross the Design Space and come with a set of Candidate Points
- ☐ Set the target values for the desired parameters:
 - ☐ Maximize Buckling Factor, consider values only > 3: Rule of thumb for ASME cod.
 - ☐ Minimize t: set target of 2 [mm] as it is the lowest value for t
 - Von-Mises < 138 [Mpa]</p>
 - ☐ Minimize Sag, consider values only < 10 [mm]

Table of	Table of Schematic F4: Optimization									
	A	В	С		D	E	F	G	Н	I
1	Name	Name Parameter		Objective			Constraint			
2		Parameter	Туре		Target	Tolerance	Туре	Lower Bound	Upper Bound	Tolerance
3	Maximize P24; P24 >= 3	P24 - Buckling Factor	Maximize	•	10		Values >= Lower Bound ■	3		0.001
4	Minimize P25	P25 - t	Minimize	▼	2		No Constraint			
5	Minimize P8; P8 <= 138 MPa	P8 - VM - Tube Max	Minimize	•	0		Values <= Upper Bound ■		138	0.001
6	Minimize P9; P9 <= 138 MPa	P9 - VM - Conv Max	Minimize	•	0		Values <= Upper Bound ■		138	0.001
7	Minimize P7; P7 >= -10 mm	P7 - Sag (Y)	Minimize	•	0		Values >= Lower Bound ■	-10		0.001
*		Select a Parameter								

DX Optimization Tool

- □ 3 candidate points are chosen: Verification can be requested as part of the process
- □ In this case, all 3 pivot around the same Design Space area (very close values)

7	■ Optimization Method						
8	MOGA	The MOGA method (Multi-Objective Genetic Algorithm) is a variant of the popular NSGA-II (Non-dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts. It supports multiple objectives and constraints and aims at finding the global optimum.					
9	Configuration	Generate 100 samples initially, 100 samples per iteration and find 3 candidates in a maximum of 20 iterations.					
10	Status	Converged after 718 evaluations.					
11	■ Candidate Points						
12		Candidate Point 1	Candidate Point 2	Candidate Point 3			
13	P20 - a (mm)	46.841	46.967	47.253			
14	P21 - b (mm)	199.3	199.3	199.3			
15	P22 - p (mm)	350.99	353.71	366.27			
16	P25 - t (mm)	× 2.5468	× 2.5469	★ 2.5481			
17	P7 - Sag (Y) (mm)	-9.8403	-9.8484	÷ -9.7225			
18	P8 - VM - Tube Max (MPa)	★★ 56.898	★★ 57.002	★★ 57.916			
19	P9 - VM - Conv Max (MPa)	→ 120.67	- 121.35	= 124.44			
20	P24 - Buckling Factor	- 4.0941	- 4.0696	- 3.9314			

Verification Point:

Sag: -9.87 [mm]

■ VM Tube: 56.92 [MPa]

■ VM Conv: 120.8 [MPa]

☐ Buckling: 4.4

Corrugated Summary

- On paper: a reasonable solution for a corrugated tube is possible
 - ☐ Most likely through ASME Method B: elastoplastic qualification
- 4 or 5 parameters are still manageable to get a good parametric model, suitable for optimization
- ☐ Final definition of values depends on engineering & tolerancing
 - □ t = 2.5468 [mm] is not a suitable value for manufacturing...
 - □ Post-processing needed after optimization
- Manufacturability of the corrugated beamtube to be studied by vendors as per RFI launched last month.