

Weld design to join chambers – mechanical tolerances Dust contamination

Manufacturing and welding options

Roxane Misler

roxane.misler@cern.ch

Weld design to join chambers – 1rst step mock-up

- Test the forming process of material 441,
- Evaluate the geometry of the component at a reduced scale,
- Monitor dust contamination during assembly + welding processes,
- 4 mm open sleeve by manual fillet welds.
- Detection of virtual leak, and vacuum test

Weld design to join chambers – 1rst step mock-up Metallography qualification of open sleeve

• 4 mm open sleeve by manual fillet welds

roxane.misler@cern.ch

R.Misler

Weld design to join chambers – 1rst step mock-up

- 4 mm open sleeve by manual fillet welds: TIG (141M) with 317L filler
- Detection of virtual leak, and vacuum test.
- → Successful result

Weld design to join chambers – 2nd background

Background component:

- End-cap (EC): resists mechanical stresses during pumping
- Bellow (BL): absorbs stresses and compensates thermal expansic
- Pumping module (PM): ensures UHV is achieved.

- Test and validate the mechanical strength of the complete assembly,
- ensure leak-tightness,
- Closed sleeve with 2 mm thickness by manual fillet welds,
- detection of virtual leaks and allowing for bakeout procedures.

Weld design to join chambers – **2nd background** Metallography qualification of close sleeve

- Fitting the close sleeve with the roundness components
- 4 mm close sleeve by manual fillet welds: TIG (141M) with 317L filler.
- Detection of virtual leak, and vacuum test.
- → Successful result : Better for close sleeve

Weld design to join chambers – 3rd step Pilot sector

Ø 1008 mm 40 m length 4 mm thickness 8 parts / line 7 sleeves / line

- currently in progress,
- closed sleeve, 2 mm thickness with a 1 mm gap, joined by manual fillet welds.

7

Dust monitoring during mock-up assembly

Activities	Balda quin	Mock-up surface				Inside mock-up		Between sections	
	Α	B1	B2	В3	С	D1	D2	E1	E2
Only operators	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6
Operator + welders (3 people)	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6
Operator + welders +Equipment's	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6	ISO 6
Plastic caps removal S1 (day1)	ISO 6	ISO 6	ISO 7	ISO 7	ISO 7	ISO 6	ISO 6	ISO 7	ISO 6
Sleeve positioning S1	ISO 6	ISO 6	ISO 7	ISO 7	ISO 7	ISO 6	ISO 6	ISO 7	ISO 6
Tack weld S1	ISO 6	ISO 6	ISO 7	ISO 7	ISO 7	ISO 7	ISO 6	ISO 7	ISO 6
Sleeve closure + tack weld S1	ISO 6	ISO 6	ISO 8	ISO 8	ISO 8	ISO 8	ISO 6	ISO 8	ISO 6
Plastic caps removal S2 (day 2)	ISO 6	ISO 7	ISO 7	ISO 7	ISO 7	ISO 6	ISO 7	ISO 7	ISO 7
Sleeve positioning S2	ISO 6	ISO 7	ISO 7	ISO 7	ISO 7	ISO 7	ISO 7	ISO 7	ISO 7
Tack weld S2	ISO 6	ISO 8	ISO 8	ISO 8	ISO 8	ISO 8	ISO 8	ISO 8	ISO 8
Sleeve closure + tack weld S2	ISO 6	ISO 8	ISO 8	ISO 8	ISO 8	ISO 8	ISO 8	ISO 8	ISO 8
Assembly completed + settling down(~2hrs)	ISO 6	•	-	-	-	ISO 7	ISO 7	-	-
Final welding outside baldaquine	•	•	•	-	-	ISO 8	ISO 8	-	-
1 day after welding	ISO 6	•	•	-	-	ISO 8	ISO 8	-	-
2 days after welding	ISO 6	•	-	-	-	ISO 8	ISO 8	-	-
5 days after welding	ISO 6	•	-	-	-	ISO 7	ISO 7	-	-
Before leak detection	ISO 6	•	-	-	-	ISO 7	ISO 7	-	-

R.Misler roxane.misler@cern.ch

Dust monitoring during mock-up assembly

Dust assessment

Summary:

R.Misler

- Conditioning of the mock-up done inside baldaquin
- ➤ Dust assessment before assembly → ISO 6 measured Inside & outside of mock-up
- Sleeve assembly → ISO 6 (Inside the mock-up)
- ➤ Tack welding → ISO 7 (High in 0.3 to 1 µm particles)
- Final assembly → ISO 7 (High in 0.3 to 1 µm particles)
- Final welding → ISO 8 (Very high 0.3 to 1 μm particles)
- Measurement after 2 days of welding → ISO 7 (High in 0.3 to 1 µm particles)
- Measurement after 5 days of welding → ISO 7(Better than before, slightly higher 0.3 µm particles)

roxane.misler@cern.ch

home.cern