

Scope

☐ Include	udes:
	Beam Tube
	Beam Tube Supports
	design, materials, stiffening provisions, pump ports, supports, manufacturing, cleaning,
	transportation, and leak testing
Doe	es not include:
	Baffles
	Slab (foundation)
	BT enclosure
	BT insulation
	BT vacuum bake
	Vacuum equipment (gate valves, pumps, controls, gauges, etc.)
	Overall management oversight, cost of money, etc.

Caveats & Sources

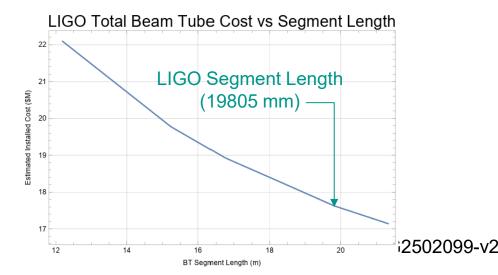
□ Cav	eats
	Based on 1994 cost data from CBI for the LIGO Beam Tube
	While this data is "ancient", it may still provide relative measures of cost
	In addition, this estimate (captured in a Mathematica notebook, <u>LIGO-T2400377</u>) may provide the
	template for updating to current cost information
	Proper escalation would require different escalation factors for the various elements of the estimate
	– this has not been done
Sou	rces
	LIGO-C1900321, "Final Design Review Data Package, Beam Tube Module: CDRL 09, DRD 04,
	Draft Detailed Design prepared by the contractor, CB&I
	C-type documents in the LIGO DCC are generally restricted to LIGO Lab personnel, but can be
	made available to LSC and perhaps the public (TBD)
	Document LIGO-T2400377 also compares the CB&I estimate to the LIGO cost book

LIGO BT Costs

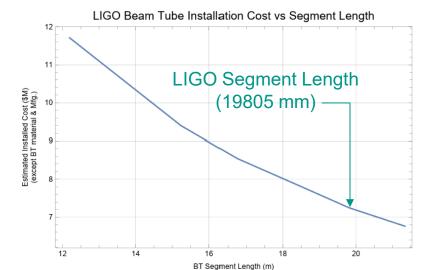
- Cost table compiled by Rai Weiss for a 2020 proposal to the NSF for CE seed funding for vacuum research
- Separation of Fixed and "Per km" costs
- □ Projection for a 40km interferometer in 2028 USD using an inflation rate of 0.023/year (factor of 2.166) total cost for 80km = \$635M

LIGO-G25020

References: LIGO Cost Book, L.Jones notes, F.Asiri notes


Item		Length dep cost
	10041 0050 411	Zengen dep cese
Management	5.5	~1.0
Design	0.83	
Tube factory	8.05	
Tube material	9.02	9.02
Bellows	0.77	0.77
Assembly	1.66	1.66
Leak check	0.87	0.87
Anchors+supports	3.05	3.05
Pump ports	1.83	1.83
Handling/shipping	0.92	0.92
Moblization/demobilization	0.46	
Installation in field	7.2	7.2
Insulation and bake	7.0	7.0
Acceptance tests	1.1	
CB&I profit (10%)	5.2	3.3
Beamtube enclosure design	0.64	
BTE QA and survey	0.32	0.32
BTE, berm, slab	18.6	18.6
construction		
TOTAL 1	72.4	55.5 3.47/km
	16.8 fixed	
Vac equipment for beamtube		
gate valves	0.72	0.72
ion pumps	0.24	0.24
cryo traps	0.80	
roughing pumps	0.24	0.16
turbo pumps	0.18	0.12
gauges, electronics	0.02	0.02
Total vac equip for	2.2	1.26 0.08/km
beamtube	0.94 fixed	
TOTAL 2	74.6	56.8 3.55/km
	17.7 fixed	

Tube Segment Length Impact on Cost (2 sites, 16 km, 1994 USD) LIGO FIXED STIFFE SPACING (758 mm)


- Costs independent of tube segment length:
 - ☐ Coil mfg (average of 5 steel producers)
 - Spiral Welding manufacture
 - ☐ Stiffener costs (mfg and installation)
- Total Costs vs segment length:

- Install Costs dependent of tube segment length:
 - Short transport case (Portland, OR to Hanford, WA)

	40'	50'	55'	60'	65'	70'
Freight	74714.5	59956.1	71 930.3	74928.7	72741.9	91927.6
Bellows	1 944 000	1560000	1416000	1 308 000	1 200 000	1116000
Supports	4 894 400	3 921 600	3 556 800	3 283 200	3 009 600	2 796 800
Tube Install	1 944 000	1560000	1416000	1 308 000	1 200 000	1116000
Leak Test	2 855 600	2 292 400	2 081 200	1922800	1764400	1641200

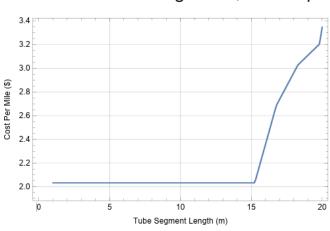
Tube Segment Length Impact on Cost (2 sites, 16 km, 1994 USD)

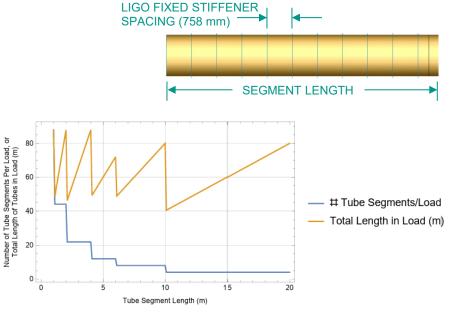
- ☐ Total Costs dependent of tube segment length:
 - Long transport case (Portland, OR to Livingston, LA)

	40'	50'	55'	60'	65'	70'
Freight	4.3%	3.9%	4.8%	5.2%	5.2%	6.7%
Bellows	8.4%	7.6%	7.2%	6.8%	6.5%	6.1%
Supports	21%	19%	18%	17%	16%	15%
Tube Install	8.4%	7.6%	7.2%	6.8%	6.5%	6.1%
Leak Test	12%	11%	11%	10%	9.5%	9%
Stiffeners	4.4%	4.9%	5.1%	5.3%	5.5%	5.5%
Coil Mfg	24%	27%	28%	29%	30%	30%
Spiral Weld Mfg	17%	19%	19%	20%	21%	21%

Total Cost (\$M) 40' 50' 55' 60' 65' 70' 23.0074 20.5084 19.8026 19.1943 18.5174 18.2669

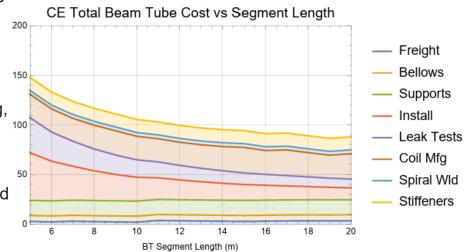
□ Segment Lengths > ~20 m not considered because Freight costs rose dramatically




CE Cost (1994 USD) with LIGO Beamtube for varying tube segment length

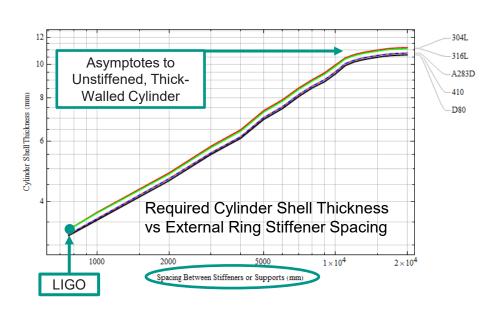
Freight

- Heavy hauling (8.6x13.6x53 ft, <80,000 lb)</p>
- Packing density used to determine the number of transport loads:
 - > 4m long tubes, 2 rows x 2 levels)
 - \subseteq 4m long tubes, stand up in 2 rows x 11



CE Cost (80 km, 1994 USD) with LIGO Beamtube for varying tube segment length (concluded)

- ☐ Bellows (EJ)
 - In principle the EJ could be designed to handle the displacement of multiple BT segments, or optimized for shorter BT segments
 - ☐ I've estimated the number of EJs on the assumption that each EJ handles 40 m of tube
- Supports: Assumed 1 fixed & 1 guided support per EJ
- Pump Ports: Simply scaled by (CE Length)/(LIGO Length)
- Coil Mfg Costs (avg. of 5): coil material (304L), transport to/from bake facility, bake, transport to/from finishing mill, outgas test, level, slit, transport to tube mfg, less cost of 10% scrap steel
- Spiral Mill Costs (avg. of 3):
 - not quoted as a function of segment length
 - shorter segments would cost more due to the need to make more transverse cuts
- ☐ Stiffeners: material, fabrication, welding costs


CE Cost (80 km, 1994 USD) with LIGO Beamtube

for varying tube stiffener spacing

- Cylinder thickness and stiffener height (MOI) increases as stiffener spacing increases per ASME 2023.BPVC.VIII, Division 1
- Costs independent of stiffener spacing: Tube segment freight,
 - Bellows, Supports, Leak Tests, Pump ports, Tube installation
- Assuming cylinder is formed by spiral welding
- (thick-walled is more likely slip rolled?)
- Assuming each 304L coil weight remains the sameStiffener
 - Material costs scaled by stiffener weight
 - ☐ Welding cost assumed constant per stiffener

CE Cost (80 km, 1994 USD) with LIGO Beamtube for varying tube stiffener spacing (concluded)

- □ The CB&I (LIGO) design seems optimal for a 304L ring-stiffened cylinder
- Corrugation fabrication cost (currently unknown) is offset by ~34% of baseline total
 - ☐ Stiffener cost of ~13.6%
 - Bellows cost of ~6.2%
 - Shell thickness reduction from 3.23 mm (LIGO) to 2.78 mm (CEBEX RFI) represents a cost of ~13.9%

