

Content

- Introduction
- Workpackage 1 (WP1)
- Workpackage 2 (WP2)
- Workpackage 3 (WP3)
- Workpackage 4 (WP4)
- Timeline

Goal MACBETH

- Industrialization of the (arm) vacuum system and in particular a cost-efficient design of the production facility and the installation scenario.
- This should ultimately allow for the realisation of 120km of UHV vacuum tubes for the ET arms, which meet all requirements.
- I. 377000m2 (53 football fields) sheet metal area
- II. 95000m3 vacuum chamber volume

MACBETH project

Project partner landscape

Boundary requirements MACBETH

- A corrugated beampipe of 1.5mm thickness (or similar) will be used
- Instead of AISI 304L (austenitic), AISI 441 (ferritic) will be used
- Beampipe needs to be installed underground instead of above ground

Flow chart of installing the beampipe

MACBETH project

WP1 Main results

WP1 - Industrialization for manufacturing and cleaning of the 120km corrugated vacuum beampipe

- Prototype beampipe section of min. 3m length above ground, including supply chain study and measurement/validation reports on requirements.
- Building of prototype machines/tooling to produce beampipe sections.

3 - Rolling sheet to pipe

4- Welding (long seam)

5 - Cleaning

6 - Rolling corrugated groves

7 Welding

8 - Rework pipe ends (interfaces)

9 - Cleaning

11 - Cleaning bake

WP1 Main challenges

WP1 - Industrialization for manufacturing and cleaning of the 120km corrugated vacuum beampipe

- How will a long pipe with corrugations be made?
- What welding technique should be used?
- How to keep contamination (during assembly) to a minimum?

WP2 Main results

WP2 - Measurement and quality control of the cleanliness

- Developing proof of concept test setup and blind/interface flanges to be tested on WP1 prototype beampipe, including supply chain study for producing beampipes to requirements.
- Proof-of-Concept of vacuum test equipment to qualify beampipe segments (robot crawler).

WP2 Main challenges

WP2 - Measurement and quality control of the cleanliness

How to measure contamination by heavy HydroCarbons in the center of the

beampipe

Local RGA needed

RGA sensitivity ~<2D

 How to test / qualify the last weld underground with 16m pipe segments

WP3 Main results

WP3 - Industrialization of the packaging and logistics (production, installation and maintenance)

- Concept and supply-chain study on the handling, packaging, transportation, storage, and installation of qualified Beampipe segments.
- The concept on packaging and transportation will be tested with transportation of the beampipe to the test facilities at CERN for testing.

14 - Packaging (transportation)

15 - Welding to beam pipe (round seam)

16 - Installing Baffles

18 - Pump down

20 - Pump down (UHV)

21 - Pump down (XHV)

WP3 Main challenges

WP3 - Industrialization of the packaging and logistics (production, installation and maintenance)

- How will the beampipe be maneuvered in the tunnel?
- How will the beampipe need to be supported?
- How will the beampipe sections be aligned with each other?

2. ET-PP-Deliverable-6.2 By CERN

Introduction WP1 WP2	WP3 WP4 Timeline
----------------------	------------------

WP4 Main results

19 – Plasma Cleaning

WP4- Plasma assisted bake-out and cleaning

- Feasibility study of removing contaminations from the inner surface of the beampipe after installation using plasma.
- A proof of concept test set-up to test and validate this.
- Potential of substituting in-situ bakeout.

Timeline important deadlines

Questions?

