

Convolution UHV Leak Failure Rate Estimate

All la	aser interferometric GW detectors employ corrugated tubing
	either as convoluted tubing or as bellows
	accommodates thermal expansion associated with diurnal temperature swings & vacuum bake-outs
Resi	dual stresses and cyclic flexing of the convolutions raises long-term reliability concerns
rega	rding UHV leaks
	If the dominant leak failure mechanism is due to cyclic fatigue, then corrugated tubes are preferred (other
	issues aside) since the cyclic movement is spread over many more convolutions
	If the dominant failure mechanism is Stress Corrosion Cracking (SCC) then smooth tubes with bellows is
	likely preferred in order to reduce the number/area of potential failure sites
Struc	ctural reliability vs UHV leak tightness
	Ultra-High Vacuum (UHV) leak on the order of 10E-9 Torr-L/s as a failure criteria is considerably more stringent than
	a structural failure of the vacuum envelope
	data and methods to predict lifetimes for structural failure may not be conservative enough for the UHV application
Revi	ew project experience with bellows leak failures

See <u>LIGO-E2400425</u> for more detail, speculation and theorizing

Bellows Leak Rate Experience

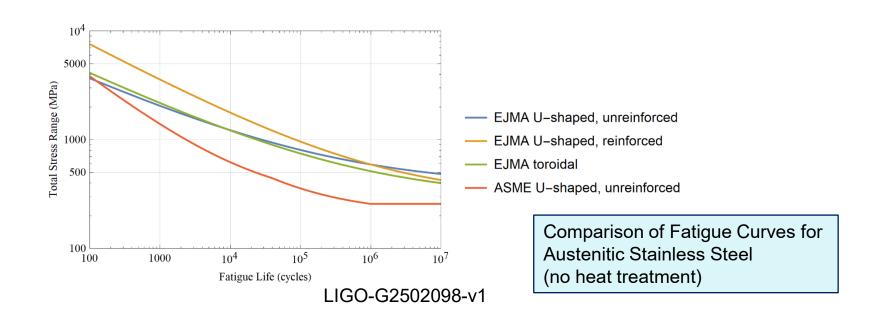
- ☐ LEP (Large Electron Positron collider) facility
 - □ LEP small vacuum leak rate of 1e-5 Pa-L/s (75e-9 torr-L/s) is larger than LIGO's leak rate limits: 1e-10 torr-L/s at the component level and 1e-9 torr-L/s for each 2 km BT module
 - Assuming leak location is associated with (scales with) the convolution number and using LEP's 5% lower bound on the leak failure rate per Bellows-Hour, gives a leak failure rate of 2e-9 per convolution-hour
 - Operational requirements for LIGO (and potentially the CE) bellows are more stressing than for LEP bellows: -11/+31 mm for 13k cycles with 6 convolutions for LIGO vs 6mm for 10k cycles with 10 convolutions for LEP
 - LEP bellows were overdesigned (more capable than their requirements)

... and yet they failed at rates unacceptable to LIGO or CE

Time Period	Average Failure Rate in Failures per Bellows-Hour	5% Lower Bound Failure Rate in Failures per Bellows- Hour	95% Upper Bound Failure Rate in Failures per Bellows-Hour		
Small vacuum leak failure mode					
Early life (installation and commissioning)	8E-06	6E-06	1E-05		
Operational life	8E-08	2E-08	2E-07		
Bellows large leak or rupture failure mode					
Operational life	1E-08	5E-11	5E-08		
	er of 1E-05 Pa-l/s (1E-08				

Bellows Leak Rate Experience

UHV Leak Failure Mechanisms


- We hypothesize the following mechanisms in the operating environment in an attempt to explain the LEP UHV leak data:
 - Cyclic Fatigue induced cracking
 - Stress Corrosion Cracking (SCC)
 - Microbial Induced Corrosion (MIC)
 - □ CE will likely be located in a dry/arid western region of the US, so MIC should not be a problem

Cyclic Fatigue Cracking

- EJMA and ASME provide methods to calculate fatigue lifetime for bellows
 - ASME is considerably more conservative
 - ☐ ASME formulation is limited to length < 3 x diameter

Cyclic Fatigue Cracking

	IGO	Rel	lows
_	 -		

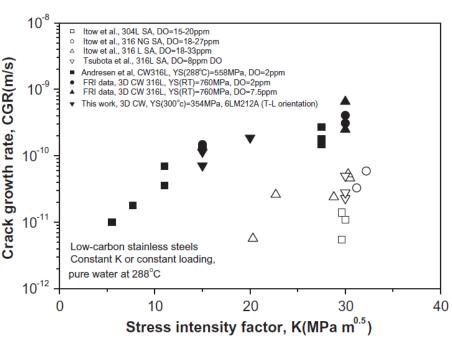
- □ Based on manufacturer's (CBI) very conservative diurnal movement estimate:
 - EJMA operational life was calculated to be 13.3k cycles (37 yrs) for diurnal temperature cycling
 - □ ASME calculation yields identical stress amplitudes but only 1.6k cycles (4.5 yrs) life (if cycle margin of 2.6 is removed still only 12 yrs)
- ☐ Using diurnal temperature fluctuations measured at LIGO LLO:
 - □ ASME calculation yields 4.1k cycles (11 yrs) life (if cycle margin of 2.6 is removed 29 yrs)
- ☐ The LIGO beamtube was installed 27 yrs ago

Corrugated tube

- □ Expect stress range < fatigue limit → infinite life</p>
- ☐ As an example, GEO600 stress range is only 14 MPa, so life > 10^6 cycles

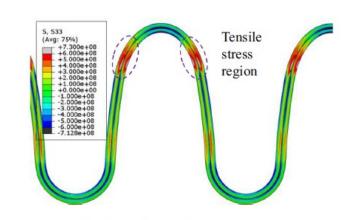
Stress Corrosion Cracking (SCC)

Caution: The	followi	ng is p	olausibility ar	gument (not a	proof)	for S	CC initiated	UHV le	eaks
--------------	---------	---------	-----------------	---------------	--------	-------	--------------	--------	------


- SCC requires combination of
 - a susceptible material
 - a corrosive chemical species in the operating environment
 - tensile stress
 - □ Unlikely to be a threshold value for stress intensity for SCC propagation (below which SCC would not occur)
 - can be the applied and/or residual stress (aka built-in or locked-in stress resulting from the forming and welding processes)
- □ SCC has a crack initiation phase followed by crack propagation. Relatively little data are available for the crack initiation process

Stress Corrosion Cracking (SCC)

- □ For austenitic stainless steel, the chlorine ion, □ CL⁻, is one of the most aggressive chemical species
- Soil and any nearby cement structures can leach salts (efflorescence)
- Sea water (and air) is a complex mixture of chlorides and sulphates.
- 304L exposed to simulated sea air (MgCl₂) showed a temperature threshold for SCC at room temperature and humidity threshold at 30% (27% is the fixed point humidity of MgCl₂, whereas the fixed point humidity of NaCl is 75%)
- SCC propagation rates for 316L in atmospheric conditions under MgCl₂ deposits (100 microgm/cm²) at 40C and 40% RH for was 1-3 x 10⁻¹¹ m/s


SCC: Residual Stresses

- ☐ Forming convolutions results in significant residual stresses
 - post-forming heat treatment could reduce the SCC risk while decreasing the cyclic fatigue lifetime
 - A nonlinear FEA could be done to calculate the residual stresses
 - ☐ From an example calculation from the literature, estimate ~115 Mpa for 304L

Welding

- Tensile stress in the fusion zone (FZ) and heat-affected zone (HAZ) can be ~100 to ~300 MPa for SAW
- ☐ Laser welding can reduce residual stress
- Low Transformation Temperature Welding (LTTW) wire can induce compressive stresses and improve corrosion resistance

(c) Circumferential stress

Example residual stress calculation after hydroforming bellows (Pa) 0.45 m long x 0.5 m diameter bellows comprised of two 1 mm thick layers of Inconel 71

SCC

- Example: LIGO Bellows
 - □ Leak testing LIGO Bellows (< 10^-9 Torr-L/s) serves as a proof test that the maximum crack/hole diameter is < 0.34 micron (molecular slip flow calculation)
 - □ stress intensity factor, K_I, for hypothetical initial crack/hole:
 - □ For bellows total stress range, $K_I = 1.2 \text{ MPa-}\sqrt{m}$
 - \Box For residual circumferential stress, K_I = 0.1 MPa- \sqrt{m}
 - Extrapolating crack growth rate data for 316L in pure hydrogenated water at 288C for $K_I = 1.2$ MPa- \sqrt{m} , implies possible rate of ~2 x 10^-12 m/s
 - □ For a 3 mm thick shell, this growth rate would take ~32 yrs to propagate through thickness

Convolution UHV Leak Failure Rate

- SCC and MIC seem unlikely to dominant (leak failure) lifetime especially if CE is in an arid western US region
- ☐ Cyclic fatigue due to diurnal temperature fluctuations seems the likely dominant failure mechanism
 - Suggests using corrugated tubing rather than bellows
 - ☐ If bellows or convoluted tubing are employed use conservative ASME rather than EJMA
- The observed rate of UHV leaks in the LEP bellows during operation is unacceptably high for CE & the mechanism for these leaks is unknown/unexplained
 - Requires more study to resolve. What are our next steps?