
Non-Causal filtering Code (in matlab)

T2500234-v1

Brian Lantz

July 11, 2025

1 Introduction

I’ve created a new function in matlab to do non-causal bandpass filtering of time series data. The function
is called bandpass viafft fn rolloff.m and it lives in the {SeismicSVN}/seismic/Common/MatlabTools/
directory. There is also a simple test code named bandpass viafft rolloff test.m which lives in the
same directory. All the figures here were generated with that code.

In the frequency domain, the filter is a flat-topped band-pass filter between the frequencies Flowpass

and Fhighpass. It rolls off as (Fhighpass/freq)
n above the band-pass and rolls up at (freq/Flowpass)

n below
the band-pass. The phase is 0 at all frequencies. In the time domain, this preserves the shape of the
signal in the pass-band, but the filter is non-causal.

The code works by taking the FFT of the time series, multiplying the FFT by a strictly real filter
(i.e. non-causal) and taking the iFFT of the result. This returns a real timeseries of the same length as
the original, but with certain frequencies attenuated. These are attenuated with no phase shift. This is
particularly useful to look at microseismic data, but obviously not in real time. The code is attached at
the end of this note. Use of the function is described in the help for the function.

2 Testing

I’ve done a few simple tests of the code. These test the code performance and give a sense of the code
behavior. Basic parameters for these tests are

1 dT = 0.01;

2 span = 100;

3 time = (0: dT: span -dT);

4

5 filt.lowpass = 0.1;

6 filt.highpass = 0.3;

7 filt.rolloff = 2;

8 signal_out = bandpass_viafft_fn_rolloff(signal_in , dT , filt.lowpass , filt.highpass ,

filt.rolloff ,’q’);

For these tests, the Nyguist frequency is 50 Hz and the frequency spacing is 1/100 Hz. The fft runs
from 0 Hz to 99.99 Hz (if you are Matlab), or -49.99 Hz to 50 Hz (if you are a mathematician), or maybe
that’s -50 to +49.99 - clearly a bit of care is needed.

Figures 1 and 2 show the magnitude response of the filter. The phase isn’t plotted because it is 0.

2.1 Nice Sine Waves

For sine waves which have an integer number of cycles in the 100 sec time window, the response is just
what you would expect. The amplitude unchanged between 0.1 and 0.3 Hz, and is attenuated at other
frequencies. There is no phase shift. Figure 3 through 5 show several examples of this. For all of these,

1

https://dcc.ligo.org/LIGO-T2500234

10-2 10-1 100 101 102

freq (Hz)

10-5

100

m
ag

Filter shape

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

Figure 1: Magnitude of the bandpass filter used for the excess microseismic motion study. The pass-band
is 0.1 to 0.3 Hz, and the filter rolls off as 1/freq2. The filter is symmetric about the Nyquist frequency.

0 10 20 30 40 50 60 70 80 90 100
freq (Hz)

10-5

100

m
ag

Filter shape

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

Figure 2: Band-pass filter plotted on a linear x scale to show the symmetry.

the blue is the input time series and the dashed red is the output time series after filtering. Because these
sine waves have an integer number of cycles, they repeat exactly in the time domain, as calculated by
the fft, and therefore there are no odd-looking transients at the beginning or the end of the time series.

2

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
Sine at 0.04 Hz

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

Figure 3: 40 mHz sine wave is attenuated by (40/100)2 = 0.16. There is no phase shift of the output
signal.

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5
Sine at 0.1 Hz

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

1.5
Sine at 0.3 Hz

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

Figure 4: 100 mHz and 300 mHz sine waves are unchanged by the filter.

3

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
Sine at 0.6 Hz

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5
Figure 5: 600 mHz sine wave is attenuated by 0.25.

4

2.2 Examples of the Non-causal Effects

Because the filter is non-causal, you can often see some odd looking impacts. For example, for the impulse
shown in figure 6, the output of the filter is clearly changing more that 10 seconds before the impulse
arrives at the filter input.

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1
impulse response

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

impulse drive
100* impulse reponse

Figure 6: The impulse response of the filter clearly shows the non-causal behavior.

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
Step response

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

Step drive
Step reponse

Figure 7: The step response of the filter also shows the non-causal behavior.

If you have a sine wave which is not an integral number of cycles, this is really a signal with a
discontinuity. This means the time series will have odd effects at the beginning and the end, where the
discontuity lives. This can be seen in figure 8.

5

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
Sine at 0.033 Hz

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

Figure 8: End effects are clear if the sine doesn’t have an integral number of periods, i.e. it doesn’t repeat
exactly.

I’ve also plotted a few square waves so we can see what they look like.

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5
square wave response

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

square drive at 0.2 Hz
square reponse

Figure 9: A square wave in the center of the pass-band looks nice.

6

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5
square wave response

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

square drive at 0.11 Hz
square reponse

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
square wave response

cr
ea

te
d

by
 b

an
dp

as
s_

vi
af

ft_
ro

llo
ff_

te
st

.m
 o

n
02

-J
ul

-2
02

5

square drive at 0.07 Hz
square reponse

Figure 10: Square waves outside the pass-band look odd

3 Matlab Code

Here is a listing of the Matlab code. Hopefully it is well enough commented that it makes sense. The
idea is to take an FFT of a time series, multiply the FFT by the filter, and take the inverse FFT of the
result. “Multiplication in the frequency domain is the same as convolution in the time domain.” The only
complexity is that you must remember to filter the frequency components above the Nyquist frequency.
(This is exactly equivalent to saying that you must filter the negative frequency components, it’s just
that matlab starts the frequency for the FFT at 0 instead of -nyquist). These are the conjugates, in the
reverse order, as the low-frequency FFT terms. You also have to be sure you do the right thing with the
element at the Nyquist frequency. If the time series has an even number of elements, then there is 1 DC
component and 1 Nyquist frequency element, and everything else has a conjugate (alternatively, the DC
and Nyquist are conjugates). However, if there are an odd number of elements, then there is still 1 DC
element, but there are 2 conjugate Nyquist frequency elements. This means that there is a fence-post
issue with the high-frequency filter which you need to count correctly. Summary - for even-number sets,
you do not repeat the highest frequency filter element, but for odd-number sets you do repeat the highest
frequency element.

Here is the code

1 function filtered_timeseries = bandpass_viafft_fn_rolloff(input_timeseries , sample_time

, lowfreq_request , highfreq_request , slope , quiet)

2 %bandpass_viafft_fn_rolloff non -causal bandpass , attenuates reject band as f^n or f^-n

3 % filtered_timeseries = bandpass_viafft(input_timeseries , sample_time , lowfreq ,

highfreq , N)

4 %

5 % input_timeseries is the original timeseries.

6 % sample_time time between samples in original timeseries , e.g. 1/2048

7

7 % lowfreq in Hz , lowest freq to keep.

8 % highfreq in Hz , highest freq to keep

9 % N roll -off of attenuation band , eg 2 to rolloff as f^2

10 %

11 % the data will be bandpass filtered by an ideal flattop bandpass window.

12 % we take an fft , attenuate the other freq ’s, and take the inverse fft.

13 % there is no windowing or detrending , so the first and last few points

14 % will likely be weird end effects if data set is

15 % not periodic (which is usually true)

16 % f-low f-high

17 % roll up +-------+

18 % as / \ attenuate as

19 % f^N / \ f^-N

20 % / \

21 % if you pick frequencies which are not identical to point is the freq

22 % band of the fft , the code will pick the closest freq , and tell you what

23 % it picked.

24 %

25 % This does not downsample , so the original and filtered time series have

26 % the same number of points

27 %

28 % for example:

29 % bandpass_viafft_fn_rolloff = bandpass_viafft(input_timeseries , Ts , 0.1, 0.5, 2);

30 % will make a bandpass between 0.1 and 0.5, rolling off like f^2 outside the passband

31 %

32 % filtered_timeseries = bandpass_viafft(input_timeseries , sample_time , lowfreq ,

highfreq , N, quiet)

33 % optional input ’quiet ’

34 % if you specify ’q’ as the last input , it will suppress the commentary.

35 % useful for big loops.

36 % BTL , June 2025, adapted from bandpass_viafft

37

38 if nargin >5

39 if strncmpi(’q’,quiet ,1)

40 show_msg = false;

41 else

42 warning(’the␣quiet␣input␣should␣be␣either␣’’q’’␣or␣omitted ’)

43 show_msg = false;

44 end

45 else

46 show_msg = true;

47 end

48

49

50 n_points_orig = length(input_timeseries);

51

52 data_size = size(input_timeseries);

53 if data_size (1) == 1 % it is a row vector

54 input_timeseries = input_timeseries ’;

55 input_was_row = true;

56 else

57 input_was_row = false;

58 end

59

60 duration = sample_time * n_points_orig; % number of sec of data

61 dF = 1/ duration;

62 nyquist_freq = 1/2 * (1/ sample_time); % nyquist freq of original data

63

64

65 inputdata_fft = fft(input_timeseries);

66 fft_points = length(inputdata_fft);

8

67

68 freq = dF * (0: fft_points -1) ’;

69

70 % do the calc for the low freq end of the bandpass filter

71

72 if lowfreq_request < 0

73 lowfreq_request = 0;

74 disp(’The␣low␣frequency␣edge␣must␣not␣be␣less␣than␣0,␣resetting␣to␣0’)

75 end

76

77 lowfreq_exclude_index = round(lowfreq_request/dF) + 1 - 1;

78 % last freq index to exclude. zero freq is point 1

79

80 lowfreq = dF * round(lowfreq_request/dF); % first freq to keep

81

82 if lowfreq ~= lowfreq_request

83 if show_msg

84 disp([’Resetting␣low␣freq␣edge␣of␣filter␣to␣’,num2str(lowfreq) ,...

85 ’␣Hz␣(was␣’,num2str(lowfreq_request),’␣Hz)’]);

86 end

87 end

88

89

90 % do the calc for the high freq end of the bandpass filter

91 if highfreq_request >= nyquist_freq

92 highfreq_exclude_band = [];

93 if show_msg

94 disp([’The␣high␣frequency␣edge␣is␣at␣or␣above␣the␣nyquist␣freq␣(’ ,...

95 num2str(nyquist_freq),’␣Hz)’])

96 disp(’so␣there␣will␣be␣NO␣HIGH␣FREQ␣FILTERING ’)

97 end

98 else

99 highfreq_index1 = round(highfreq_request/dF) + 1 + 1 ; % where to start exclusion

band

100 % is this even or odd? -

101 % do we repeat the last point (odd)

102 % or not (last freq is unique , even number of points)

103 if (fft_points /2) == round(fft_points /2)

104 highfreq_index2 = fft_points /2 + 1; % where to end exclusion band

105 evennumber = true; % the highest freq is NOT repeated

106 else

107 highfreq_index2 = floor(fft_points /2) + 1; % where to end exclusion band

108 evennumber = false; % the highest freq IS repeated.

109 end

110 highfreq_exclude_band = (highfreq_index1:highfreq_index2);

111 highfreq = dF * round(highfreq_request/dF);

112

113 if highfreq ~= highfreq_request

114 if show_msg

115 disp([’Resetting␣high␣freq␣edge␣of␣filter␣to␣’,num2str(highfreq) ,...

116 ’␣Hz␣(was␣’,num2str(highfreq_request),’␣Hz)’]);

117 end

118 end

119 end

120 %

121

122 fft_filter = ones(size(inputdata_fft));

123

124

125 % filtered_fft = inputdata_fft; % start with all the data

126 % now set the data outside the filter band to 0,

9

127 % This is two bands of frequency , but

128 % this is a 2 sided fft , with 0 Hz as the first element , so there are

129 % 4 bands to set to 0. bands 2 and 3 link up at the nyquist freq ,

130 % so there are really only 3 distinct bands.

131

132

133 % simple example of short vector

134 % point# 1 2 3 4 5 6 7 8 9 10

135 % freq: 0 dF 2dF 3dF 4dF 5dF=nyquist 4dF 3dF 2dF dF

136 % exclude B1 B1 . . B3 B3 B3 . . B2

137

138 % first low freq end (band 1)

139 if lowfreq_exclude_index > 0

140 fft_filter (1: lowfreq_exclude_index) = (freq (1: lowfreq_exclude_index)./ lowfreq).^

slope;

141 end

142

143

144 fft_filter(highfreq_exclude_band) = (highfreq ./ freq(highfreq_exclude_band)).^ slope;

145

146 if evennumber

147 % don ’t repeat the last index

148 fft_filter(highfreq_index2 +1: fft_points) = fft_filter ([highfreq_index2 - 1: -1:

2]);

149 else

150 % do repeat the high freq point

151 fft_filter(highfreq_index2 +1: fft_points) = fft_filter ([highfreq_index2: -1:

2]);

152 end

153

154 if show_msg

155 figure; loglog(freq , fft_filter)

156 end

157

158 filtered_data = fft_filter .* inputdata_fft;

159 filtered_timeseries = ifft(filtered_data);

160

161 if input_was_row == true

162 filtered_timeseries = filtered_timeseries ’;

163 end

164

165 end

10

	Introduction
	Testing
	Nice Sine Waves
	Examples of the Non-causal Effects

	Matlab Code

