

O4 LIGO-Virgo-KAGRA Network Status & Plans

Iberian GW Meeting – 23 June 2025

T. Dent, for the LVK Collaborations

LIGO-Virgo-KAGRA collaborations

Plan of the talk

- The weakest force : gravity
- Ground-based GW detectors & sources
- CBC GW science: astrophysics, relativity, ...
- \circ LVK observations up to 03 (2015-2020)
- The O4 run (2023-2025)
- O5 and looking forward (A# et al.)

4 (known) fundamental forces

How to 'see' GW

- Tidal effect on spatially separated test particles
- Can extract energyimagine a springconnecting particles
- Measure variations in distance or travel time

Strain
$$h(t) \sim \frac{\delta L(t)}{L}$$

The broad spectrum of GW

Laser interferometric detection

- 'Michelson interferometer' end mirrors free to move along arms
- Differential length change $\delta(L_x L_y) = h(t) \cdot L$
 - ⇒ time of flight difference
 - ⇒ relative phase difference@ beam-splitter
 - ⇒ transmitted intensity variation @ PD

Down to <1e-23: Enhance the signal

- Long arms
- High power ultrastable laser
- Power recycling (factor ~35)
- Resonant arm cavities(factor ~300)
- Signal recycling

Down to <1e-23: Suppress noise

Seismic noise reduction

- Active seismic isolation
- Quadruple pendulum suspension
- ~10 orders of magnitude displacement noise suppression above 10Hz

Precision Interferometry: Understanding Measurement Noises

Fundamental Noises

- I. Displacement Noises
- $\rightarrow \Delta L(f)$
 - Seismic noise
 - Radiation Pressure
 - Thermal noise
 - Suspensions
 - Optics
- II. Sensing Noises
- $\rightarrow \Delta t_{\rm photon}(f)$
 - Shot Noise
 - Residual Gas

Technical Noises

→ Hundreds of them ...

Advanced LIGO Design Noise Budget

A global network

Image credit: LIGO Lab

- Detection rate, sky coverage, network duty cycle
- Greater accuracy on source parameters
 - Distance, sky location, orientation of source ...

ADVANCED VIRGO

Transient GW sources

Highly relativistic systems

CBC

Burst

Image: D. Price (Exeter) & S. Rosswog (Bremen)

Cataclysmic events of compact astrophysical objects

- NeutronStar / BlackHole binary mergers
- CoreCollapseSuperNovae
- Pulsar glitches / oscillation modes ?
- Exotics : cosmic string kinks ? ...

Simulation: F. Hanke et al. (MPIA Garching)

Persistent GW sources

- Continuous Wave: sinusoids from rotating NS
 - many potential sources in Galaxy
- Stochastic: random 'background' from superposition of unresolved sources
 - astrophysical transients at high redshift
 - primordialquantum fluctuations / criticalphenomena in very early Universe

Anatomy of a binary merger

18

Astrophysics from BBH mergers

• Stellar winds 'weak' allowing $\sim 30~M_{\odot}$ BH to form

Astrophysics from BBH mergers

 Stellar winds 'weak' allowing ~30 M_☉ BH to form

 Likely forming at low metallicity

Astrophysics from BBH mergers

 Stellar winds 'weak' allowing ~30 M_☉ BH to form

 Likely forming at low metallicity

• \sim 85 M $_{\odot}$ BH above 'mass gap' from SN pair instability

⇒ hierarchical formation?

Exploring GR with GW sources

- Strong field: compact objects (NS, BH) and behaviour 'close to' singularities via NR
- > **Precise constraints** on low velocity PN expansion
 - > v/c up to ~ 0.4
 - 'Higher modes' (beyond quadrupole)
- Black hole perturbation theory 'ringdown'
- Small mass ratio expansion 'self-force'
 - Probe of Schwarzschild / Kerr geometry
- **Exotics:** black hole mimickers, boson stars
- > Early Universe: quantum fluctuations ...??

Exploring GR with GW propagation

- > Verify 2 transverse tensor polarizations
- > Constrain non-GR dispersion (eg graviton mass)
- Constrain Lorentz symmetry violation ...
- ('Strong' or 'Weak') Gravitational Lensing of GW
 - Amplification of signal
 - Multiple transient "images", other possible effects
- Verify speed of GW propagation
 - Multi-messenger events with prompt emission

Multi-messenger Astronomy with GW

Gravitational Waves

X-rays / Gamma-rays

UV / Visible / Infrared Light

Radio

HE Neutrinos

GW170817 / GRB 170817A

- First GW multimessenger observation
- Time and sky position coincident between GW and gamma-ray observatories

GW170817 / GRB 170817A

- First GW messenge
- Time and coincider
 GW and gobservate

 Optical, UV & IR counterpart ('kilonova')

Science from multimessenger BNS detection

Speed of GW = speed of light

• Rules out many non-GR 'dark energy' theories

Heavy element nucleosynthesis in NS collisions

Independent estimate of Hubble constant

Bounds on NS tidal deformability & equation of state

Bounds on high energy neutrino emission (IceCube, Pierre Auger)

Detections of compact binary mergers from 2015-2020 Image credit: LVK / S. Ghonge & K. Jani

LIGO-Virgo observations up to 2020

03 run: April 2019 through March 2020

• 90 'significant' binary merger candidates (cumulative 01-03)

LVK public data products

• **GW O**pen **S**cience **C**enter data on GWTC-3

https://www.gw-openscience.org/eventapi/html/GWTC-3/

Name	Version	Release	GPS 1	Mass 1 (M_{\odot})	Mass 2 (M _☉)	Network SNR	Distance (Mpc)	Xeff	Total Mass (M _☉)
Nume			U. U .					Vett	
GW190930_133541	v1	GWTC-2	1253885759.2	+12.4 12.3 _{-2.3}	7.8 _{-3.3}	9.8	+360 760 ₋₃₂₀	0.14 _{-0.15}	+8.9 20.3 _{-1.5}

 Data release for papers: inference samples, table data, tutorial notebook ...

https://dcc.ligo.org/LIGO-P2100239/publichttps://zenodo.org/record/5655785

Essick+ (in prep.)

- LIGO using frequency-dependent squeezing of photon state
- April 2024 : Virgo joined

- LIGO using frequency-dependent squeezing
- April 2024 : Virgo joined
- 04c extended through November 2025
 - allow for preparation of O5 upgrade hardware
 & joint followups with Rubin Observatory
- KAGRA had significant setbacks from Noto Peninsula Earthquake (Jan 2024)
 - Rejoined 04 with sensitivity ~10 Mpc

O4 run: observing since May 2023

Gravitational Wave Detector Network

Operational Snapshot as of Jun. 11, 2025 20:50:53 UTC

Detector	Status	Duration [hh:mm]	Latency [s]
GEO600	Observing	04:13	34
LIGO Hanford	Observing	00:00	59
LIGO Livingston	Observing	03:07	45
Virgo	Observing	01:03	52
KAGRA	Observing	03:27	21

O4 public event highlights

• 230518: pre-run engineering data Probable NS-BH merger

• 230529: single-detector event Another possible NS-BH merger (see next slide ...)

• 240615: smallest localization area 5 deg² due to 3 detectors (first of 2 alerts on same day!)

GW230529: the lightest NS-BH?

First publication of O4 run

- Strengthens evidence against supposed 'mass gap' 3-5 M_☉
- No direct measurement of tidal (NS matter) effects
- Increases estimated rate of future NS-BH mergers with EM emission

THE ASTROPHYSICAL JOURNAL LETTERS

OPEN ACCESS

Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M_{\odot} Compact Object and a Neutron Star

New for O4c : Public $\mathcal M$ estimates

• Precisely measured from inspiral signal in the low mass regime

 Accurately estimated by search pipelines in the low mass regime

Binned chirp mass information

New data product providing source chirp mass in the form of binned probabilities.

The predetermined bins are the following (in units of solar masses): [0.1, 0.87, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.9, 2.1, 2.3, 3, 5.5, 11, 22, 44, 88, 1000]

Example: A chirp mass of 0.87 M_{\odot} may correspond to a 1 M_{\odot} , 1 M_{\odot} merger

- Bins are 'fine' in the HasSSM and HasNS regime where chirp mass is recovered more accurately,
- Become coarse for higher masses in the BBH regime.

Binned chirp mass information

New data product providing source chirp mass in the form of binned probabilities.

The predetermined bins are the following (in units of solar masses): [0.1, 0.87, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.9, 2.1, 2.3, 3, 5.5, 11, 22, 44, 88, 1000]

Example: A chirp mass of 1.2 M_{\odot} may correspond to a 1.4 M_{\odot} , 1.4 M_{\odot} merger. Example: A chirp mass of 3 M_{\odot} may correspond to a 10 M_{\odot} , 1.4 M_{\odot} merger.

- Bins are 'fine' in the HasSSM and HasNS regime where chirp mass is recovered more accurately
- Become coarse for higher masses in the BBH regime.

Binned chirp mass information

New data product providing source chirp mass in the form of binned probabilities.

The predetermined bins are the following (in units of solar masses): [0.1, 0.87, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.9, 2.1, 2.3, 3, 5.5, 11, 22, 44, 88, 1000]

Example: A chirp mass of 8.7 M_{\odot} may correspond to a 10 M_{\odot} , 10 M_{\odot} merger. Example: A chirp mass of 44 M_{\odot} may correspond to a 50 M_{\odot} , 50 M_{\odot} merger.

- Bins are 'fine' in the HasSSM and HasNS regime where chirp mass is recovered more accurately
- Become coarse for higher masses in the **BBH** regime.

Integration into public alerts

• The most probable bin is reported in the GCN circular

- .json of all bin probabilities and .png histogram on GraceDB (public)
 - Low-latency estimate available in ~seconds along with em-bright+p(astro): mchirp source.json
 - PE estimate available alongside update alert within
 ~hour(s): mchirp source PE.json

Integration into public alerts

• The most probable bin is reported in the GCN circular

CBC detection capabilities in O4a

Extensive injection (simulated signal) campaign for CBC searches

Essick et al. in prep

CBC detection capabilities in O4a

• Extensive injection (simulated signal) campaign for CBC searches

CBC detection capabilities in O4a

Extensive injection (simulated signal) campaign for CBC searches

"What We Did Over The Summer Holidays"

Many upcoming O4a LVK papers (O4a data release late Aug.) ... watch this space!

- > Transient detection catalog: introduction, methods, results
- > Burst, stochastic, continuous wave, sub-solar-mass CBC searches
- Population properties of CBC sources
- ➤ H0 measurement using CBC sources
- > Tests of GR and search for GW lensing with CBC sources
- Exceptional event paper(s)

Some examples of exceptional events would be one that yields:

- · a binary with a sub-solar-mass component;
- other astrophysically interesting component masses (large mass ratio, large black hole mass, large neutron star mass, etc.);
- · clear statement on neutron star equation of state;
- · measurement of a high-spin system;
- clear evidence of orbital eccentricity;
- a multi-messenger counterpart (externally-triggered or in electromagnetic/neutrino follow-up searches);
- substantial improvement in the measurement of the Hubble constant;
- clear evidence of deviation from general relativity;
- · a gravitationally lensed gravitational wave detection;
- clear indication of a particular formation channel.
- first detection or finding signs of a signal with KAGRA.

O5: the 'A+' design

Mid-scale upgrade of original 'Advanced LIGO'

- Most critical technology : improved mirror coatings to deal with higher arm power
- ➤ Virgo O5 plans currently under reassessment

https://observing.docs.ligo.org/plan/

Post-O5: A# / Virgo_nEXT /...

- Upgrades exploiting existing facilities to the limit
- Targets **factor ~2 increase in range** over 05
- Stepping stone to future detector technologies

Design parameter	A+	A [#]	CE
Arm length	$4\mathrm{km}$	$4\mathrm{km}$	20 km, 40 km
Arm power	$750\mathrm{kW}$	$1.5\mathrm{MW}$	$1.5\mathrm{MW}$
Squeezing level	$6\mathrm{dB}$	$10\mathrm{dB}$	$10\mathrm{dB}$
Test mass mass	$40\mathrm{kg}$	$100\mathrm{kg}$	$320\mathrm{kg}$
Test mass coatings	A+	A + /2	A+
Suspension length	$1.6\mathrm{m}$	$1.6\mathrm{m}$	$4\mathrm{m}$
Newtonian suppression	$0\mathrm{db}$	6 db	20 db

D. Reitze, https://www.nsf.gov/mps/phy/nggw/present_ligo.pdf

- Fill gap in observational capability to 'next generation' of observatories
- LIGO-India: LIO, Aundha planned to operate early 2030s

Conclusions

- 04 run underway with Virgo & KAGRA ⇒ Nov 2025
- Lots of O4a results planned for release ...
- 04b catalogue and results in the pipeline

Many discoveries remain to be made!