Unlocking the unseen Universe with gravitational waves

Jess McIver CASCA - Toronto June 4, 2024

M87 (17 Mpc) SMBH - Event Horizon Telescope

Daniel Lopez: El Cielo de Canarias

Einstein's Gravity: General Relativity

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

LIGO/Caltech

Matter tells spacetime how to curve Spacetime tells matter how to move

- John Wheeler

Einstein's prediction: Gravity bends light

Apparent position of a distant star when its light passes close to the sun

Distant Star

Einstein's prediction: Gravity bends light

Apparent position of a distant star when its light passes close to the sun

The New York Times.

LIGHTS ALL ASKEW
IN THE HEAVENS

EINSTEIN THEORY TRIUMPHS

Stars Not Where They Seemed or Were Calculated to be, but Nobody Need Worry.

Distant Star

Measured by Eddington in 1919 during a total solar eclipse!

Indirect evidence of gravitational waves

Hulse-Taylor Binary Pulsar Won the Nobel Prize in Physics in 1993!

Current GW detector network (IGWN)

Sky localization with GWs

Discovery of an optical counterpart

D. Coulter et al. 2017 arXiv 1710.05452 Image: 1M2H/UC Santa Cruz and Carnegie Observatories/Ryan Foley

The first multi-messenger discovery with GWs

Zoheyr Doctor / CIERA / LIGO-Virgo Collaboration

The stellar graveyard

Timeline of Advanced LIGO and Advanced Virgo

Mostly – black hole mergers

'	'	Public Alerts ▼ Lates	st Search N	Notifications Pipe	elines Documentation	n Logout					
Authenticated as: Jess McIver											
LIGO/Virgo/KAGRA Public Alerts											
	O4 Significant Detection Candidates: 105 (119 Total - 14 Retracted)										
O4 Low Significance Detection Candidates: 1946 (Total)											
	Event ID	Possible Source (Probability)	Significant	UTC	GCN	Location	FAR				
	S240429an	Terrestrial (98%), BNS (2%)	Yes	April 29, 2024 05:23:03 UTC	GCN Circular Query Notices VOE	20° 211 13° 13° 12° 10° 10° 10° 20° 20° 20° 20° 20° 20° 20° 20° 20° 2	1 per 11.049 years				
	S240428dr	BBH (>99%)	Yes	April 28, 2024 22:54:40 UTC	GCN Circular Query Notices VOE	90° 21° 18° 18° 12° 12° 18° 18° 33° 33° 33° 33° 33°	1 per 1.5024e+06 years				

EVOLUTION OF STARS

$\frac{\text{Get to know}}{\text{GW}230529}$

Full name GW230529_181500

oiscovered on 29 May 2023 at 18h15 USC

most likely a merger between a Neutron Star & Black Hole (NSBH)

 \sim 3.6 M_{\odot}

Most symmetric NSBH event so far

more likely than prior GW NSBHs to have the neutron star ripped apart by the black hole

Recent news!

~ 650 million light years away

Detectors

- Offline OR not operational
- Online BUT not used for analysis*
 - Online AND used for analysis

HUVK

Primary object in lower mass gap

further supports that this region is not empty

@astronerdika

^{*} Although the KAGRA detector was in observing mode, its sensitivity was insufficient to impact the analysis of GW230529

The UBC GW astrophysics group

https://gravitational-waves.phas.ubc.ca/

Mervyn Chan
Alan Knee
Sofía Alvarez

Niko Lecoeuche
Annudesh Liyanage
Steven Hsueh

Evan Goetz, Alan Knee, Neev Shah, Kat Nell

Evan Goetz Helen Du Alan Knee

Alan Knee, Kye Emond, with Scott Oser, TRIUMF

Mervyn Chan, Miriam Cabero

Alan Knee Heather Fong Neev Shah Vaibhav Garg

Electromagnetic Wave Windows

Gravitational Wave Périods

Illustration - https://en.wikipedia.org/wiki/Extreme_mass_ratio_inspiral

Pulsar Timing Arrays

Illustration
David J Champion

An International Radio Telescope Effort

An International Radio Telescope Effort

→ THE COSMIC MICROWAVE BACKGROUND

Planck Legacy Release 2018

This is just the beginning of gravitational wave astrophysics!

Slide by G. Losurdo

This is just the beginning of gravitational wave astrophysics!

Slide by G. Losurdo

This is just the beginning of gravitational wave astrophysics!

7

Slide by G. Losurdo

Visit the Gravitational Wave Open Science Centre:

Help us out on GravitySpy.org!

Quantum Physics

But due to quantum physics, there will always be uncertainty (noise) in the light wave

This noise limits LIGO's sensitivity to weak signals

New for 04: a 300 m filter cavity

