Multi-transient segmentation in LIGO using computer vision

Siddharth Soni Nikhil Mukund Erik Katsavounidis

LIGO Lab MIT

Scientific Machine Learning for Gravitational Wave Astronomy June 2 - 6, 2025

Overview

- LIGO and Detector Characterization
- Computer Vision
- Computer Vision in LIGO
- Summary

Ground based Gravitational Wave detectors

Purpose: To detect GWs in the band 20 - 2000 Hz

Where: 2 LIGO detectors in USA, Virgo in Italy, KAGRA in Japan

Operations: Have completed 3 Observing runs (O1, O2, O3), O4 is currently ongoing

Detections: More than 200 detections have been made since the start of O1

LIGO Livingston, Louisiana, USA

LIGO Hanford, Washington, USA

Virgo Cascina,
Italy
https://www.ligo.caltech.edu/

Detector Characterization

- Monitor the status of detector: Instrumental and data quality investigations
- Physical Environment Monitoring: injection tests and noise coupling calculations
- Event Validation: Check data quality around the events
- Summary pages and Detchar tools: maintenance and development

Transient noise aka glitches

- Short duration excess power
- Environmental or instrumental coupling
- Reduce sensitivity/range of the detector
- Mess up with the real events, parameter estimation, create false alerts, reduce sensitivity for stochastic searches
- Originate in detector hardware.
 Investigate using detchar tools,
 injections, on/off tests etc

Computer Vision

Computer Vision

- Field within AI, enabling computers to interpret visual information
- Object recognition, image classification, feature detection, image (pixel) segmentation, tracking motion
- Dominated by Convolutional Neural Networks from 1980-2015
- You Only Look Once (YOLO) since 2016 being used for object detection in real time

You Only Look Once aka YOLO

- YOLO is a family of real-time object detection algorithms.
- Input → YOLO → (bounding box/masks, class label) single shot detection
- Divides the image into an NxN grid and for each grid cell it predicts:
 - Object detection: Object exists or not
 - Localization: Bounding box parameters (x,y)
 - Confidence: Class probability
- Really fast: 150 fps, great for real time prediction.
- Applications:
 - Self-driving cars
 - Medical imaging
 - o Industrial defect detection and so much more

YOLO <u>algorithm</u> https://arxiv.org/abs/1506.02640

Image <u>source</u>

Image Segmentation

- Beyond object detection or classification
- Pixel level masks that outline the shape of the object
- Instance segmentation: what the object is and where it is
- Multiclass image segmentation
- Used in autonomous driving

Image <u>source</u>, <u>source</u>

Computer Vision in LIGO

Motivation

GW170817

As detectors become more sensitive, the rate of transient noise may go up

Main Idea

We feed Q transforms (or event times) to the script and it outputs a Q scan showing different class labels and segmented pixel-masks for each class

For this, we first need to train our model on lots of annotated spectrograms of transient noise and chirps.

Training data

- Noise: Glitches from O3
- Signals: BBH, BNS signal waveforms, generated using PyCBC and O3 injection dataset
- Combine the glitches and chirps, make the Q-transform, annotate the chirps and noise
- Variation in chirp strength, types of glitches, temporal separation (including overlap) between glitch and chirp in the training set
- 1. https://zenodo.org/records/5649212
- 2. https://zenodo.org/records/7890437

Training Metrics

- Metrics to quantify training performance
- MAP@50: Mean Avg precision @50
 means prediction is correct if
 Intersection Over Union area between
 predicted and ground truth is > 50. So
 better localization.
- **Precision**: TP/(TP + FP). High precision leads to fewer wrong guess.
- **Recall**: TP/(TP + FN). High recall means smaller number of missed detections.
- Next: Inference on new examples and then a larger statistical study

DataSet	mAP50	Precision	Recall
Validation	94.7 %	89.0 %	90.0 %
Test	95.3 %	91.5 %	92.0 %

Example results (inference): BBH chirps

Source: https://zenodo.org/records/7890437

Example results (inference): BNS chirps

Source: https://zenodo.org/records/7890437

Example results (inference): Chirps + Glitch

Source: https://zenodo.org/records/7890437

Large Sample Inference study

- Single-detector analysis (used LIGO-Livingston data only)
- BBH chirps from SNR 6 to 50 divided into multiple SNR bands
- BNS Chirps from SNR 12 to 70 divided into multiple SNR bands
- Glitch population is randomly sampled with SNR above 7.5 from O3 data
- Four datasets: BBH Chirps, BBH Chirps + Glitch, BNS Chirps, BNS Chirps + Glitch
- Measuring recall- what fraction of data is correctly classified as Chirp
- Around 1300 examples for better statistical results

BBH Study

BNS Study

- Recall = TP/(TP + FN): what fraction of data is correctly classified as Chirp
- Addition of glitches reduces recall
- Despite that, the model maintains a high level of performance

No chirp detected

No chirp detected

Confusion Matrix

- Previous plots show the ability of the model to identify chirps, given there are chirps in the data
- We also want to understand the general performance
- Background is defined as instrument data devoid of transient events (no signals or glitches)

-0.8

-0.6

-0.4

-0.2

Example inference: GW170817

Summary and Outlook

- 1. Image segmentation model can successfully **identify** and **localize** transient events in gravitational-wave Q-scan spectrograms
- 2. Method can **delineate transient events down to the pixel level**, providing analytic information for each one of them, including time-frequency localization/specification
- 3. **Multi-object identification** particularly powerful in gravitational-wave transient event analysis in the case of:
 - a. signal + noise, e.g., binary coalescences in proximity/overlap with glitches
 - b. multiple signals occurring in close proximity, e.g., high rate of binary events resulting to almost overlapping events, lensing events
- 4. Algorithm can **run at near zero-latency**, once Q-transform and YOLO pass data completely in memory (currently intermediate file I/O is used)
- 5. Method effectively **replaces human(eye)-in-the-loop for at-scale applications**; offers quantitative statements, accompanied by efficiency and false alarm rates associated with them that can assist in:
 - a. noise mitigation by offering improved localization of transient noise near the signal thus leading to automated noise subtraction
 - b. overall efforts for automating Gravitational-Wave event validation

References

- 1. YOLO: https://arxiv.org/abs/1506.02640
- 2. Ultralytics: https://www.ultralytics.com/
- 3. GW170817: https://arxiv.org/abs/1710.05832
- 4. Q-transform: https://dspace.mit.edu/handle/1721.1/34388
- 5. LIGO Detector Characterization in the first half of fourth Observing run: https://arxiv.org/abs/2409.02831
- 6. O3 Injections Dataset: https://zenodo.org/records/7890437
- 7. PyCBC: https://pycbc.org
- 8. Noise dataset: https://zenodo.org/records/5649212

Acknowledgement:

- This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.
- LIGO Lab PHY-2309200
- A3D3-PHY-2117997

Thank You! Questions?

Extra Slides

YOLO Model Architecture

BackBone

Extract features from input: edges textures, shapes

Summarizes "what" is "where"

Neck

Acts as a bridge between Backbone and Head

Provides contextual information

Merges information of different size features

Head

Generates network outputs: bounding boxes, pixel masks, class labels

Transforms the feature maps prepared by Neck and Backbone into detections

1. chirps_6_9/images/output/1e79ff0da21cbe23bb097fd5f9da0744_masked.jpg

SNR Band	Recall (Chirp)	Recall (Chirp + Glitch)
6_9	0.51	0.23
9_12	0.55	0.25
12_15	0.74	0.39
15_18	0.88	0.62
18_21	0.91	0.69
21_24	0.95	0.62
24_27	0.89	0.74
27_30	0.90	0.76
30_33	0.93	0.87
33_36	0.95	0.79
36_39	0.95	0.88
40_45	0.92	0.90
45_50	0.94	0.84

SNR Band	Recall (Chirp)	Recall (Chirp + Glitch)
12_15	0.15	0.09
15_18	0.39	0.15
18_21	0.47	0.18
21_24	0.69	0.35
24_27	0.73	0.38
27_30	0.81	0.51
30_33	0.84	0.58
33_36	0.88	0.54
36_39	0.94	0.67
40_45	0.98	0.75
45_50	1.00	0.85
50_60	0.99	0.93
60_70	1.00	0.97

Medical Imaging

Quality Control

Computer Vision in LIGO: GravitySpy

- GravitySpy is CNN based transient noise classification tool
- Takes a spectrogram as an input and outputs glitch category
- Classifies transient noise into one of n (23) categories
- Limitations:
 - Does not do multiclass classification
 - Does not do glitch localization
 - Difficult to retrain

Potential new signal in O3 (PE runs ongoing....)

Multiple Chirps + Noise

