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Overview

● LIGO and Detector Characterization

● Computer Vision

● Computer Vision in LIGO

● Summary 
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Ground based Gravitational Wave detectors
Purpose: To detect GWs in the band 20 - 2000 Hz 
Where: 2 LIGO detectors in USA, Virgo in Italy, KAGRA in Japan
Operations: Have completed 3 Observing runs (O1, O2, O3), O4 is currently ongoing
Detections: More than 200 detections have been made since the start of O1 

LIGO Livingston, 
Louisiana, USA

LIGO Hanford, 
Washington, USA

Virgo Cascina,
Italy 3https://www.ligo.caltech.edu/

https://www.ligo.caltech.edu/


Detector Characterization
● Monitor the status of detector : Instrumental and 

data quality investigations 

● Physical Environment Monitoring: injection tests and 
noise coupling calculations 

● Event Validation: Check data quality around the 
events

● Summary pages and Detchar tools: maintenance and 
development

4LIGO detector characterization in the first half of fourth Observing run. S Soni et al 2025 Class. Quantum Grav. 42 085016



Transient noise aka glitches
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● Short duration excess power

● Environmental or instrumental coupling

● Reduce sensitivity/range of the detector

● Mess up with the real events, parameter 
estimation, create false alerts, reduce 
sensitivity for stochastic searches

● Originate in detector hardware. 
Investigate using detchar tools, 
injections, on/off tests etc  



Computer Vision
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Computer Vision

● Field within AI, enabling computers to interpret visual 
information 

● Object recognition, image classification, feature detection, image 
(pixel) segmentation, tracking motion 

● Dominated by Convolutional Neural Networks from 1980-2015 

● You Only Look Once (YOLO) since 2016 being used for object 
detection in real time
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You Only Look Once aka YOLO

● YOLO is a family of real-time object detection 
algorithms.

● Input →                              → (bounding box/masks, 
class label) single shot detection

● Divides the image into an NxN grid and for each 
grid cell it predicts:

○ Object detection: Object exists or not
○ Localization: Bounding box parameters (x,y)
○ Confidence: Class probability

● Really fast: 150 fps, great for real time prediction.
● Applications:

○ Self-driving cars
○ Medical imaging
○ Industrial defect detection and so much more

YOLO

YOLO algorithm
https://arxiv.org/abs/1506.02640

8Image source

https://medium.com/@chnwsw01/yolo-algorithm-c779b9b2018b
https://arxiv.org/abs/1506.02640
https://stackoverflow.com/questions/50575301/yolo-object-detection-how-does-the-algorithm-predict-bounding-boxes-larger-than


Image Segmentation

Image source, 
source

● Beyond object detection or 
classification

● Pixel level masks that outline 
the shape of the object

● Instance segmentation: what 
the object is and where it is

● Multiclass image 
segmentation 

● Used in autonomous
 driving
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https://www.ultralytics.com/blog/image-segmentation-with-ultralytics-yolo11-on-google-colab
https://medium.com/analytics-vidhya/introduction-to-semantic-image-segmentation-856cda5e5de8


Computer Vision 
in LIGO
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Motivation
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GW170817

As detectors become more sensitive, the rate of transient noise may go up



Main Idea

Spectrogram as Input YOLO based 
Segmentation Model

Output Image:
Class label (Noise or 

Chirp) &
Segmentation masks

We feed Q transforms (or event times) to the script and it outputs a Q scan 
showing different class labels and segmented pixel-masks for each class
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For this, we first need to train our model on lots of annotated spectrograms of 
transient noise and chirps.



Training data
● Noise: Glitches from O3
● Signals: BBH , BNS signal waveforms, 

generated using PyCBC and O3 
injection dataset

● Combine the glitches and chirps, 
make the Q-transform, annotate the 
chirps and noise

● Variation in chirp strength, types of 
glitches, temporal separation 
(including overlap) between glitch 
and chirp in the training set
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1. https://zenodo.org/records/5649212
2. https://zenodo.org/records/7890437

https://zenodo.org/records/5649212
https://zenodo.org/records/7890437


Training Metrics
● Metrics to quantify training 

performance
● MAP@50: Mean Avg precision @50 

means prediction is correct if 
Intersection Over Union area between 
predicted and ground truth is > 50. So 
better localization.

● Precision: TP/(TP + FP). High precision 
leads to fewer wrong guess.

● Recall: TP/(TP + FN). High recall means 
smaller number of missed detections.

● Next: Inference on new examples and 
then a larger statistical study 

14Image source

https://commons.wikimedia.org/wiki/File:Intersection_over_Union_-_object_detection_bounding_boxes.jpg


Example results (inference) : BBH chirps
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Source: https://zenodo.org/records/5649212, https://zenodo.org/records/7890437

https://zenodo.org/records/5649212
https://zenodo.org/records/7890437


Example results (inference): BNS chirps
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Input

Input

Output

Output

Source: https://zenodo.org/records/5649212, https://zenodo.org/records/7890437

https://zenodo.org/records/5649212
https://zenodo.org/records/7890437


Example results (inference): Chirps + Glitch
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Input
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Output

Source: https://zenodo.org/records/5649212, https://zenodo.org/records/7890437

https://zenodo.org/records/5649212
https://zenodo.org/records/7890437


18Source: https://zenodo.org/records/5649212, https://zenodo.org/records/7890437

https://zenodo.org/records/5649212
https://zenodo.org/records/7890437


Large Sample Inference study

● Single-detector analysis (used LIGO-Livingston data only)

● BBH chirps from SNR 6 to 50 divided into multiple SNR bands

● BNS Chirps from SNR 12 to 70 divided into multiple SNR bands

● Glitch population is randomly sampled with SNR above 7.5 from O3 data

● Four datasets: BBH Chirps, BBH Chirps + Glitch, BNS Chirps, BNS Chirps + Glitch

● Measuring recall- what fraction of data is correctly classified as Chirp

● Around 1300 examples for better statistical results 
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BBH Study BNS Study

● Recall = TP/(TP + FN) : what fraction of data is correctly classified as Chirp

● Addition of glitches reduces recall
● Despite that, the model maintains a high level of performance
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No chirp detected
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Chirp Chirp + Glitches

No chirp detected



Confusion Matrix

● Previous plots show the 
ability of the model to 
identify chirps, given 
there are chirps in the 
data

● We also want to 
understand the general 
performance

● Background is defined as 
instrument data devoid of 
transient events (no 
signals or glitches)
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Example inference: GW170817
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Summary and Outlook
1. Image segmentation model can successfully identify and localize transient events in 

gravitational-wave Q-scan spectrograms
2. Method can delineate transient events down to the pixel level, providing analytic 

information for each one of them, including time-frequency localization/specification
3. Multi-object identification particularly powerful in gravitational-wave transient event 

analysis in the case of:
a. signal + noise, e.g., binary coalescences in proximity/overlap with glitches
b. multiple signals occurring in close proximity, e.g., high rate of binary events resulting to almost 

overlapping events, lensing events
4. Algorithm can run at near zero-latency,  once Q-transform and YOLO pass data completely 

in memory (currently intermediate file I/O is used) 
5. Method effectively replaces human(eye)-in-the-loop for at-scale applications; offers 

quantitative statements, accompanied by efficiency and false alarm rates associated with 
them that can assist in:

a. noise mitigation by offering improved localization of transient noise near the signal thus leading to 
automated noise subtraction

b. overall efforts for automating Gravitational-Wave event validation
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Thank You!
Questions?
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Extra Slides
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YOLO Model Architecture

  BackBone

Extract features from 
input: edges textures, 
shapes

Summarizes “what” is 
“where”

Neck

Acts as a bridge between 
Backbone and Head

Provides contextual 
information

Merges information of 
different size features

     Head

Generates network 
outputs: bounding boxes, 
pixel masks, class labels

Transforms the feature 
maps prepared by Neck 
and Backbone into 
detections
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1. chirps_6_9/images/output/1e79ff0da21cbe23bb097fd5f9da0744_masked.jpg
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Medium article nature article

Medical Imaging

Quality Control 32

https://medium.com/@safk8899/computer-vision-in-autonomous-vehicles-21dffa873b23
https://www.nature.com/articles/s41598-024-52823-9


Computer Vision in LIGO: GravitySpy

● GravitySpy is CNN based transient 
noise classification tool

● Takes a spectrogram as an input and 
outputs glitch category

● Classifies transient noise into one of n 
(23) categories

● Limitations:
○ Does not do multiclass 

classification
○ Does not do glitch localization 
○ Difficult to retrain

GravitySpy

Output: 
“Scattered Light”
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Potential new signal in O3 ( PE runs ongoing….)
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Multiple Chirps + Noise
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