## Multi-transient segmentation in LIGO using computer vision

Siddharth Soni Nikhil Mukund Erik Katsavounidis

LIGO Lab MIT

Scientific Machine Learning for Gravitational Wave Astronomy June 2 - 6, 2025

### **Overview**

- LIGO and Detector Characterization
- Computer Vision
- Computer Vision in LIGO
- Summary

#### **Ground based Gravitational Wave detectors**

Purpose: To detect GWs in the band 20 - 2000 Hz

Where: 2 LIGO detectors in USA, Virgo in Italy, KAGRA in Japan

Operations: Have completed 3 Observing runs (O1, O2, O3), O4 is currently ongoing

Detections: More than 200 detections have been made since the start of O1







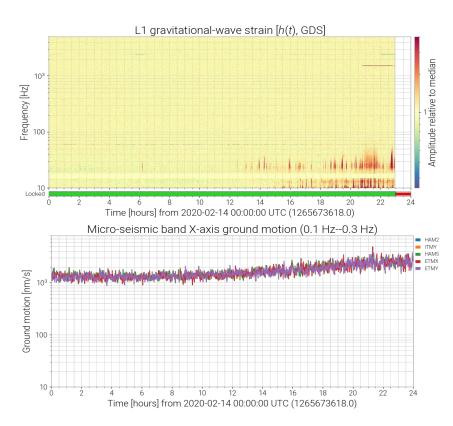
LIGO Livingston, Louisiana, USA

LIGO Hanford, Washington, USA

Virgo Cascina,
Italy
https://www.ligo.caltech.edu/

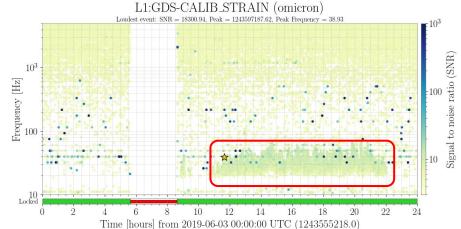
#### **Detector Characterization**

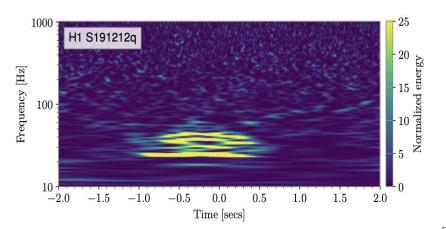
- Monitor the status of detector: Instrumental and data quality investigations
- Physical Environment Monitoring: injection tests and noise coupling calculations
- Event Validation: Check data quality around the events
- Summary pages and Detchar tools: maintenance and development



## Transient noise aka glitches

- Short duration excess power
- Environmental or instrumental coupling
- Reduce sensitivity/range of the detector
- Mess up with the real events, parameter estimation, create false alerts, reduce sensitivity for stochastic searches
- Originate in detector hardware.
   Investigate using detchar tools,
   injections, on/off tests etc





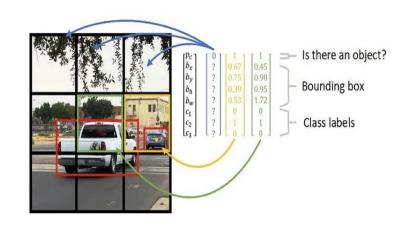
## **Computer Vision**

## **Computer Vision**

- Field within AI, enabling computers to interpret visual information
- Object recognition, image classification, feature detection, image (pixel) segmentation, tracking motion
- Dominated by Convolutional Neural Networks from 1980-2015
- You Only Look Once (YOLO) since 2016 being used for object detection in real time

### You Only Look Once aka YOLO

- YOLO is a family of real-time object detection algorithms.
- Input → YOLO → (bounding box/masks, class label) single shot detection
- Divides the image into an NxN grid and for each grid cell it predicts:
  - Object detection: Object exists or not
  - Localization: Bounding box parameters (x,y)
  - Confidence: Class probability
- Really fast: 150 fps, great for real time prediction.
- Applications:
  - Self-driving cars
  - Medical imaging
  - o Industrial defect detection and so much more



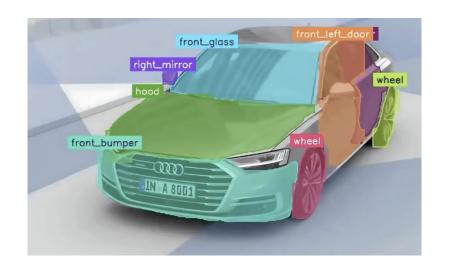
YOLO <u>algorithm</u> <a href="https://arxiv.org/abs/1506.02640">https://arxiv.org/abs/1506.02640</a>

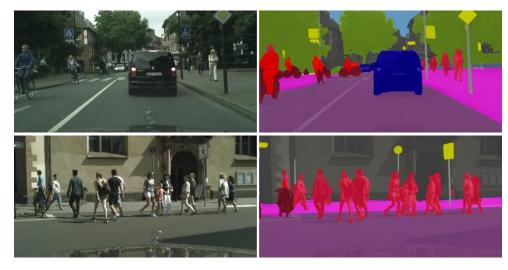
Image <u>source</u>

## **Image Segmentation**

- Beyond object detection or classification
- Pixel level masks that outline the shape of the object
- Instance segmentation: what the object is and where it is
- Multiclass image segmentation
- Used in autonomous driving

Image <u>source</u>, <u>source</u>

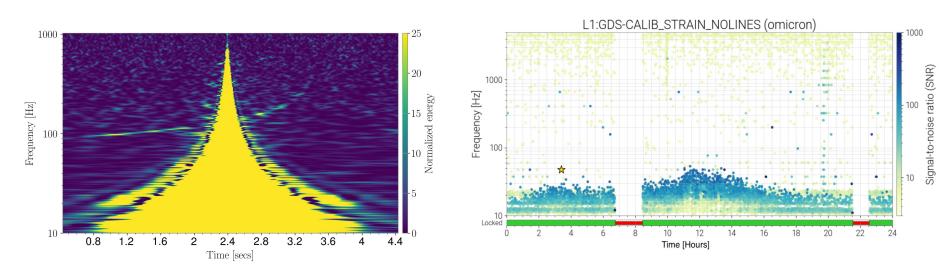




# Computer Vision in LIGO

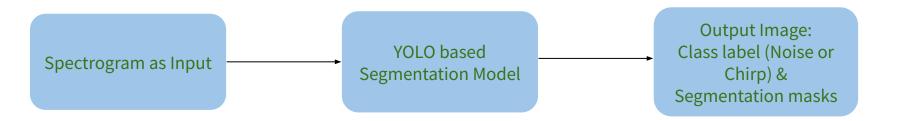
### **Motivation**

#### GW170817



As detectors become more sensitive, the rate of transient noise may go up

#### Main Idea

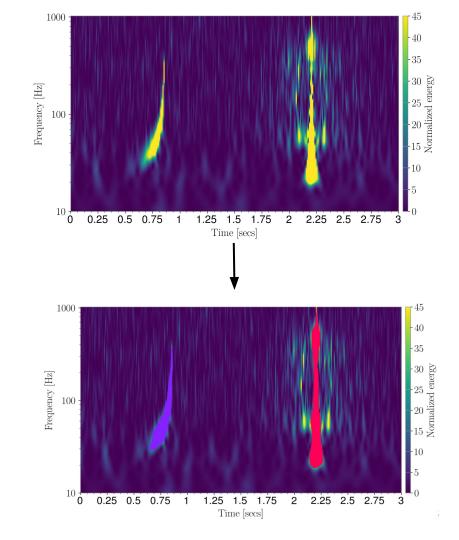


We feed Q transforms (or event times) to the script and it outputs a Q scan showing different class labels and segmented pixel-masks for each class

For this, we first need to train our model on lots of annotated spectrograms of transient noise and chirps.

## **Training data**

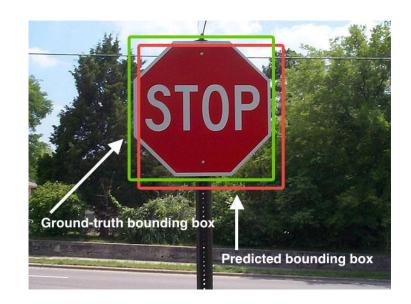
- Noise: Glitches from O3
- Signals: BBH, BNS signal waveforms, generated using PyCBC and O3 injection dataset
- Combine the glitches and chirps, make the Q-transform, annotate the chirps and noise
- Variation in chirp strength, types of glitches, temporal separation (including overlap) between glitch and chirp in the training set
- 1. <a href="https://zenodo.org/records/5649212">https://zenodo.org/records/5649212</a>
- 2. <a href="https://zenodo.org/records/7890437">https://zenodo.org/records/7890437</a>



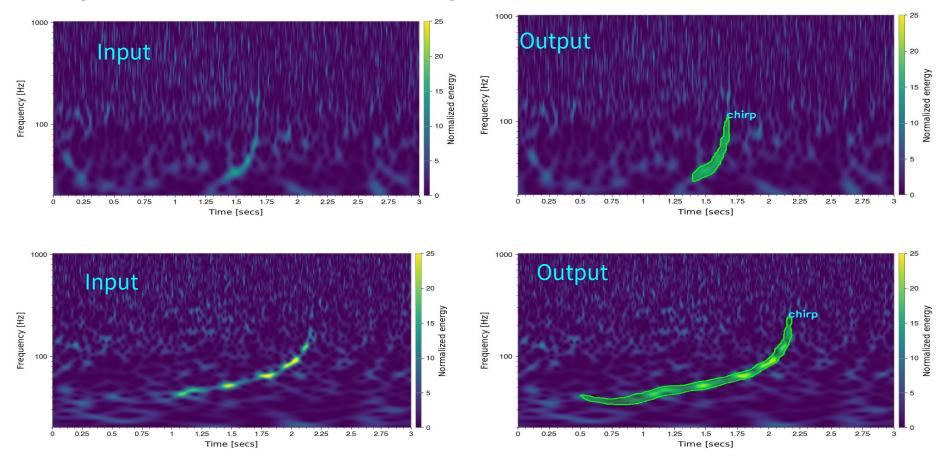
## **Training Metrics**

- Metrics to quantify training performance
- MAP@50: Mean Avg precision @50
  means prediction is correct if
  Intersection Over Union area between
  predicted and ground truth is > 50. So
  better localization.
- **Precision**: TP/(TP + FP). High precision leads to fewer wrong guess.
- **Recall**: TP/(TP + FN). High recall means smaller number of missed detections.
- Next: Inference on new examples and then a larger statistical study

| DataSet    | mAP50  | Precision | Recall |
|------------|--------|-----------|--------|
| Validation | 94.7 % | 89.0 %    | 90.0 % |
| Test       | 95.3 % | 91.5 %    | 92.0 % |

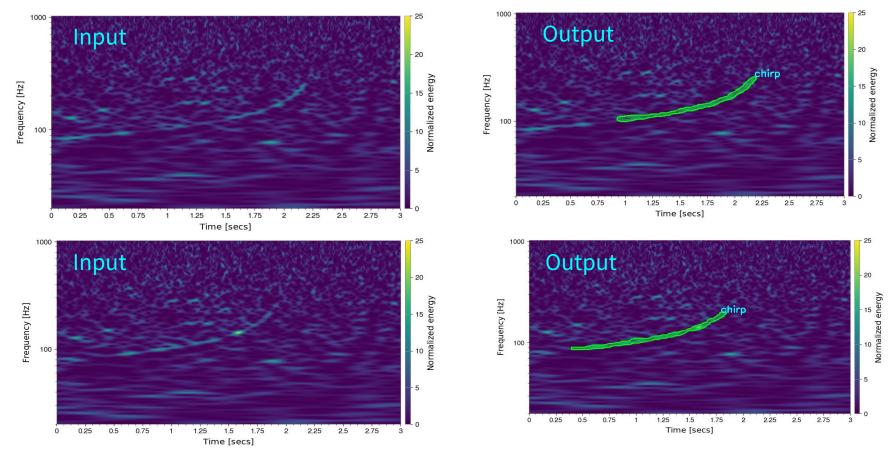


#### Example results (inference): BBH chirps



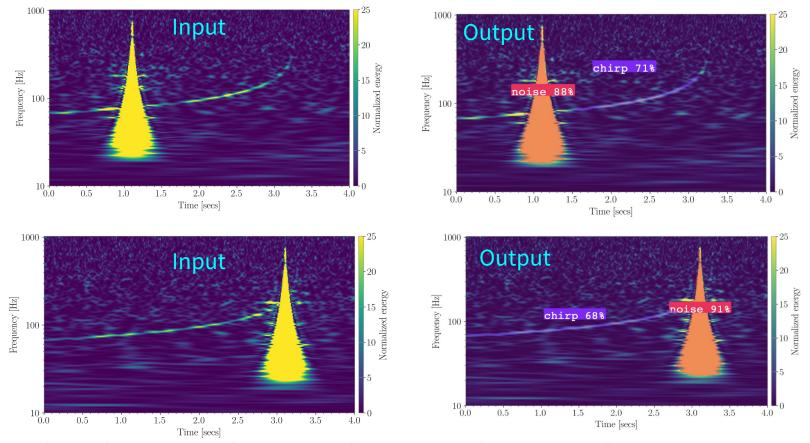
Source: <a href="https://zenodo.org/records/5649212">https://zenodo.org/records/7890437</a>

#### Example results (inference): BNS chirps

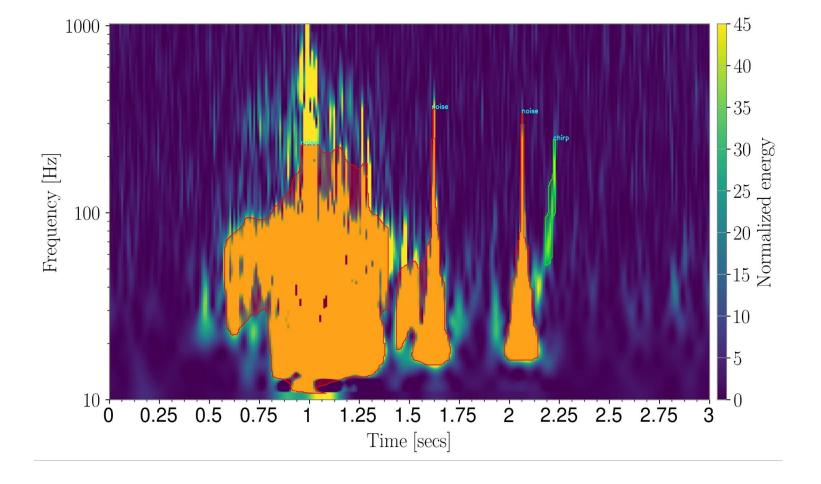


Source: <a href="https://zenodo.org/records/5649212">https://zenodo.org/records/7890437</a>

#### Example results (inference): Chirps + Glitch



Source: <a href="https://zenodo.org/records/5649212">https://zenodo.org/records/7890437</a>

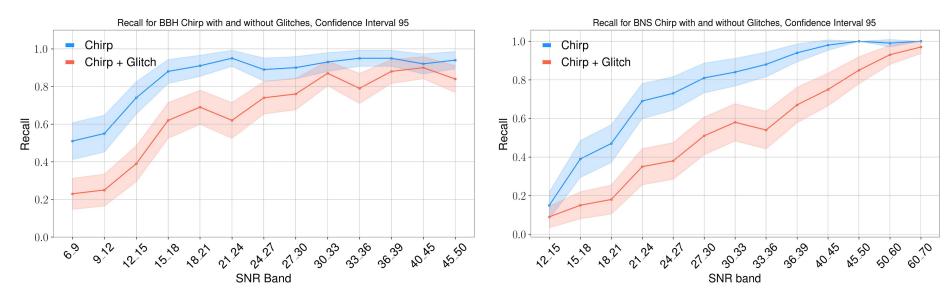


#### Large Sample Inference study

- Single-detector analysis (used LIGO-Livingston data only)
- BBH chirps from SNR 6 to 50 divided into multiple SNR bands
- BNS Chirps from SNR 12 to 70 divided into multiple SNR bands
- Glitch population is randomly sampled with SNR above 7.5 from O3 data
- Four datasets: BBH Chirps, BBH Chirps + Glitch, BNS Chirps, BNS Chirps + Glitch
- Measuring recall- what fraction of data is correctly classified as Chirp
- Around 1300 examples for better statistical results

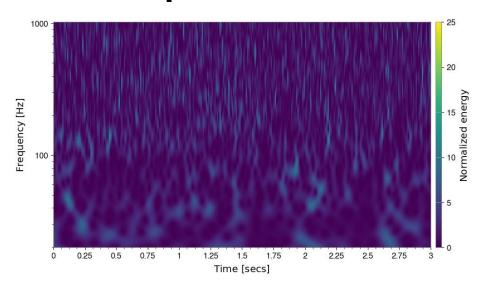
#### **BBH Study**

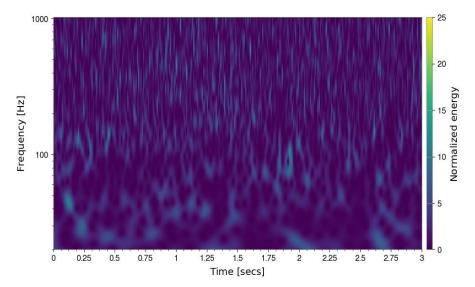
#### **BNS Study**



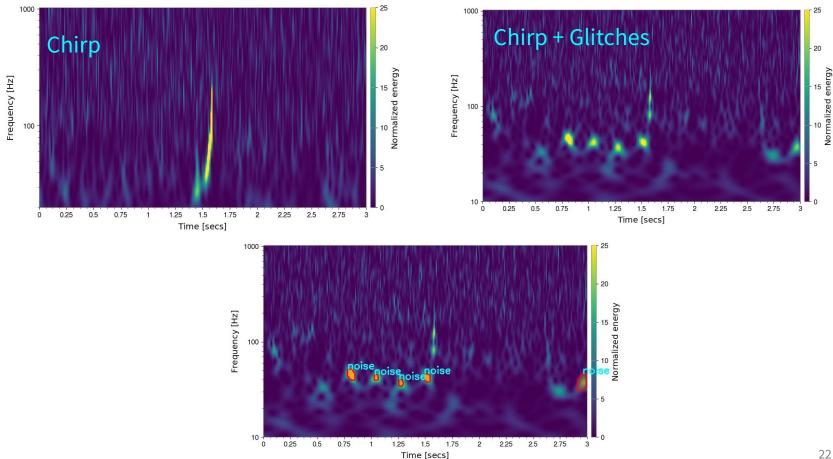
- Recall = TP/(TP + FN): what fraction of data is correctly classified as Chirp
- Addition of glitches reduces recall
- Despite that, the model maintains a high level of performance

## No chirp detected



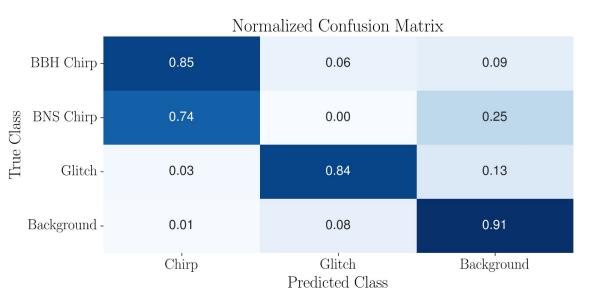


## No chirp detected



#### **Confusion Matrix**

- Previous plots show the ability of the model to identify chirps, given there are chirps in the data
- We also want to understand the general performance
- Background is defined as instrument data devoid of transient events (no signals or glitches)



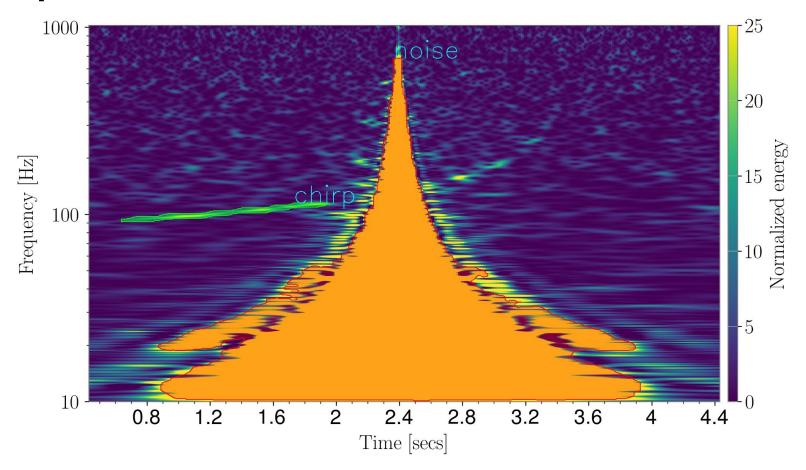
-0.8

-0.6

-0.4

-0.2

## **Example inference: GW170817**



## **Summary and Outlook**

- 1. Image segmentation model can successfully **identify** and **localize** transient events in gravitational-wave Q-scan spectrograms
- 2. Method can **delineate transient events down to the pixel level**, providing analytic information for each one of them, including time-frequency localization/specification
- 3. **Multi-object identification** particularly powerful in gravitational-wave transient event analysis in the case of:
  - a. signal + noise, e.g., binary coalescences in proximity/overlap with glitches
  - b. multiple signals occurring in close proximity, e.g., high rate of binary events resulting to almost overlapping events, lensing events
- 4. Algorithm can **run at near zero-latency**, once Q-transform and YOLO pass data completely in memory (currently intermediate file I/O is used)
- 5. Method effectively **replaces human(eye)-in-the-loop for at-scale applications**; offers quantitative statements, accompanied by efficiency and false alarm rates associated with them that can assist in:
  - a. noise mitigation by offering improved localization of transient noise near the signal thus leading to automated noise subtraction
  - b. overall efforts for automating Gravitational-Wave event validation

#### References

- 1. YOLO: <a href="https://arxiv.org/abs/1506.02640">https://arxiv.org/abs/1506.02640</a>
- 2. Ultralytics: <a href="https://www.ultralytics.com/">https://www.ultralytics.com/</a>
- 3. GW170817: <a href="https://arxiv.org/abs/1710.05832">https://arxiv.org/abs/1710.05832</a>
- 4. Q-transform: <a href="https://dspace.mit.edu/handle/1721.1/34388">https://dspace.mit.edu/handle/1721.1/34388</a>
- 5. LIGO Detector Characterization in the first half of fourth Observing run: <a href="https://arxiv.org/abs/2409.02831">https://arxiv.org/abs/2409.02831</a>
- 6. O3 Injections Dataset: <a href="https://zenodo.org/records/7890437">https://zenodo.org/records/7890437</a>
- 7. PyCBC: <a href="https://pycbc.org">https://pycbc.org</a>
- 8. Noise dataset: <a href="https://zenodo.org/records/5649212">https://zenodo.org/records/5649212</a>

#### Acknowledgement:

- This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.
- LIGO Lab PHY-2309200
- A3D3-PHY-2117997

# Thank You! Questions?

## **Extra Slides**

#### **YOLO Model Architecture**

#### BackBone

Extract features from input: edges textures, shapes

Summarizes "what" is "where"

#### Neck

Acts as a bridge between Backbone and Head

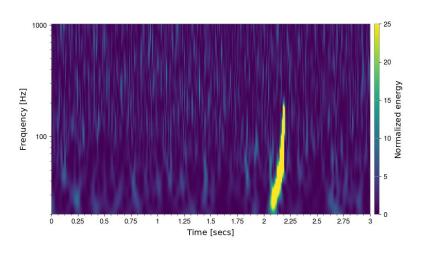
Provides contextual information

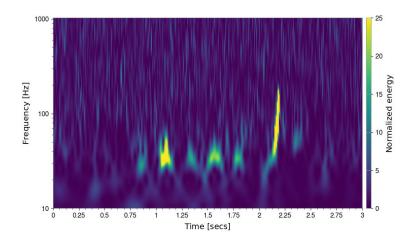
Merges information of different size features

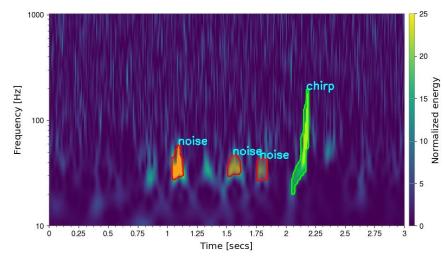
#### Head

Generates network outputs: bounding boxes, pixel masks, class labels

Transforms the feature maps prepared by Neck and Backbone into detections



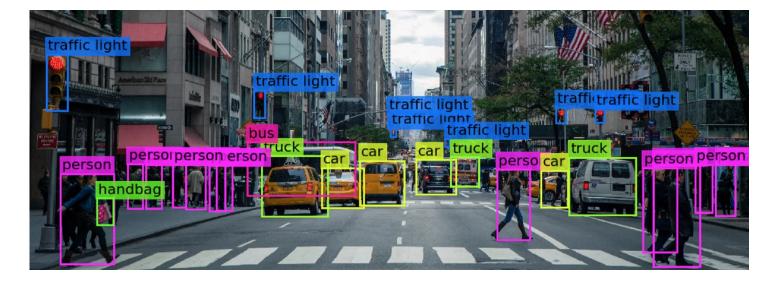


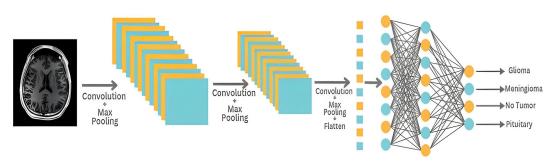


#### 1. chirps\_6\_9/images/output/1e79ff0da21cbe23bb097fd5f9da0744\_masked.jpg

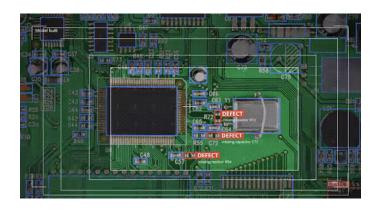
| SNR Band | Recall (Chirp) | Recall (Chirp + Glitch) |
|----------|----------------|-------------------------|
| 6_9      | 0.51           | 0.23                    |
| 9_12     | 0.55           | 0.25                    |
| 12_15    | 0.74           | 0.39                    |
| 15_18    | 0.88           | 0.62                    |
| 18_21    | 0.91           | 0.69                    |
| 21_24    | 0.95           | 0.62                    |
| 24_27    | 0.89           | 0.74                    |
| 27_30    | 0.90           | 0.76                    |
| 30_33    | 0.93           | 0.87                    |
| 33_36    | 0.95           | 0.79                    |
| 36_39    | 0.95           | 0.88                    |
| 40_45    | 0.92           | 0.90                    |
| 45_50    | 0.94           | 0.84                    |

| SNR Band | Recall (Chirp) | Recall (Chirp + Glitch) |
|----------|----------------|-------------------------|
| 12_15    | 0.15           | 0.09                    |
| 15_18    | 0.39           | 0.15                    |
| 18_21    | 0.47           | 0.18                    |
| 21_24    | 0.69           | 0.35                    |
| 24_27    | 0.73           | 0.38                    |
| 27_30    | 0.81           | 0.51                    |
| 30_33    | 0.84           | 0.58                    |
| 33_36    | 0.88           | 0.54                    |
| 36_39    | 0.94           | 0.67                    |
| 40_45    | 0.98           | 0.75                    |
| 45_50    | 1.00           | 0.85                    |
| 50_60    | 0.99           | 0.93                    |
| 60_70    | 1.00           | 0.97                    |





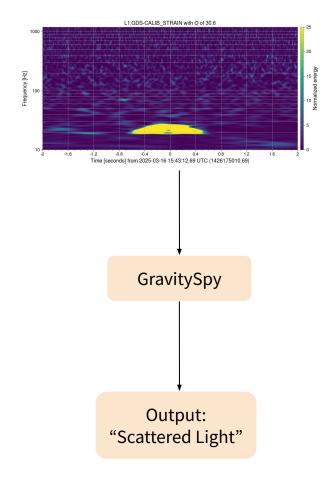
**Medical Imaging** 



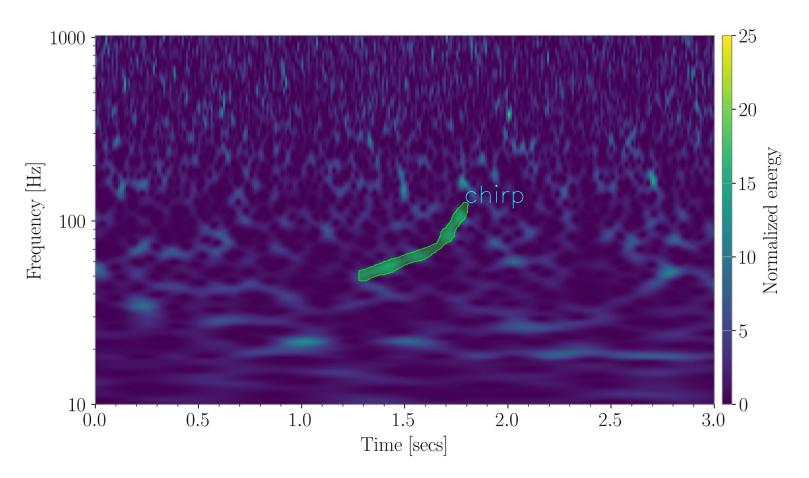
**Quality Control** 

#### Computer Vision in LIGO: GravitySpy

- GravitySpy is CNN based transient noise classification tool
- Takes a spectrogram as an input and outputs glitch category
- Classifies transient noise into one of n (23) categories
- Limitations:
  - Does not do multiclass classification
  - Does not do glitch localization
  - Difficult to retrain



## Potential new signal in O3 (PE runs ongoing....)



## **Multiple Chirps + Noise**

