LIGO-T2400377

Cosmic Explorer (CE) Cost Estimate of Unstiffened and Ring - Stiffened Beam Tubes

(based on 1992-1994 cost data)

v1

Scope

Caveats

general

Sources

LIGO Fabrication Cost based on CBI documentation

N.B.: Costs below are for one LIGO Site (8 km of Tube)

Short Transport (Portland, OR to Hanford, WA) Case

This was the shortest transportation case considered by CBI but had the highest cost per mile.

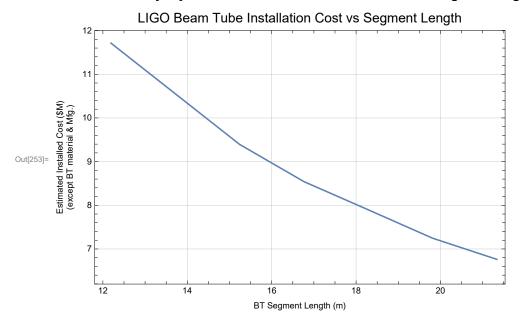
```
In[224]:= (* using Portland, OR to Hanford, WA rates*)
    (* costTransPerMile[BTsegmentLength] *)
    transMileageCosts = {{12.192, 2.03172}, {15.24, 2.03172}, {16.764, 2.68537},
        {18.288, 3.02828}, {19.812, 3.20449}, {21.336, 4.35449}, {22.86, 4.35449}};
    costTransPerMile = Interpolation[transMileageCosts, InterpolationOrder → 1];
    Off[InterpolatingFunction::dmval];

In[227]:= (* LIGO BT is "interrupted" at the mid-station *)
    armLength1 = 3987.155 - 2028.345;
    armLength2 = 2006.155 - 47.345;

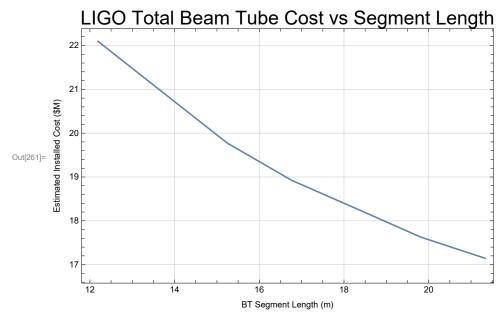
In[229]:= armLength1 + armLength2
Out[229]:= 3917.62
```

1

```
In[230]:= (* including 1 spare tube segment per ~2km module *)
       BTsegmentLength = \{40, 50, 55, 60, 65, 70\} 0.3048;
       Clear[nTubes];
       nTubes[BTL_] := 2 (Ceiling[armLength1/BTL] + Ceiling[armLength2/BTL] + 2);
 In[231]:= nTubesPerLoad = 4;
       nLoads = nTubes[BTsegmentLength] / nTubesPerLoad;
 In[233]:= (* Portland, OR to Hanford, WA *)
       miles = 227;
       costTrans = nLoads * miles * costTransPerMile[BTsegmentLength];
 In[235]:= nTubeSegments = nTubes[BTsegmentLength]
       nBellows = nTubes[BTsegmentLength] / 2
       nSupports = nTubes[BTsegmentLength] - 4
       nTubeInstalls = nTubes[BTsegmentLength] - 1
       nLeakTests = nTubes[BTsegmentLength] + 1
       nSites = 2;
Out[235]= \{648, 520, 472, 436, 400, 372\}
Out[236]= \{324, 260, 236, 218, 200, 186\}
Out[237]= \{644, 516, 468, 432, 396, 368\}
Out[238]= \{647, 519, 471, 435, 399, 371\}
Out[239]= \{649, 521, 473, 437, 401, 373\}
 in[241]:= costPerBellows = 3000;
       costPerSupport = 3800;
       costPerTubeInstall = 1500;
       costPerLeakTest = 2200;
 In[245]:= costBellows = nSites nBellows costPerBellows;
       costSupports = nSites nSupports costPerSupport;
       costTubeInstall = nSites nTubeSegments costPerTubeInstall;
       costLeakTests = nSites nLeakTests costPerLeakTest;
 In[249]:= totalCostInstall =
          (costTrans + costBellows + costSupports + costTubeInstall + costLeakTests) / 10^6;
 In[250]:= (* Compare to Table at bottom of pg. 60 of LIGO DRD 9 ITEM 2. pdf *)
       (* reference table has errors especially in 1st 3 columns *)
 in[251]:= TableForm[Partition[Join[costTrans, costBellows,
          costSupports, costTubeInstall, costLeakTests], Length[BTsegmentLength]],
        TableHeadings → {{"Freight", "Bellows", "Supports", "Tube Install", "Leak Test"},
          {"40'", "50'", "55'", "60'", "65'", "70'"}}]
Out[251]//TableForm=
                        40'
                                     50'
                                                              60'
                                                                           65'
                                                                                       70'
                                                 55'
       Freight
                        74714.5
                                     59956.1
                                                 71930.3
                                                              74928.7
                                                                           72741.9
                                                                                       91927.6
       Bellows
                        1944000
                                     1560000
                                                 1416000
                                                              1 308 000
                                                                           1 200 000
                                                                                       1116000
                        4 894 400
                                     3 921 600
                                                 3 556 800
                                                              3 283 200
                                                                           3 009 600
                                                                                       2796800
       Supports
       Tube Install
                        1944000
                                     1560000
                                                 1416000
                                                              1 308 000
                                                                           1 200 000
                                                                                       1116000
       Leak Test
                      2 855 600
                                     2 292 400
                                                 2081200
                                                              1922800
                                                                           1764400
                                                                                       1641200
```



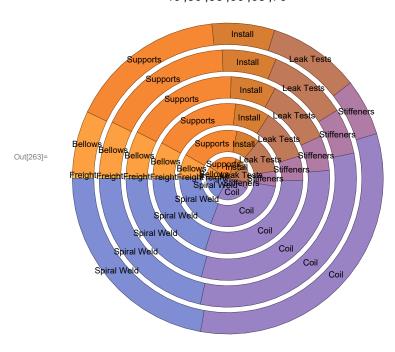
In[252]:= (* Compare to Figure on pg. 61 of LIGO_DRD _ 9 _ITEM _ 2. pdf *)


In[253]:= ListPlot[

Transpose[Partition[Join[BTsegmentLength, totalCostInstall], Length[BTsegmentLength]]], Joined → True, Frame → True, FrameLabel → {"BT Segment Length (m)",

"Estimated Installed Cost (\$M)\n(except BT material & Mfg.)"}, GridLines → Automatic, PlotLabel → Style["LIGO Beam Tube Installation Cost vs Segment Length", 14]]


```
In[254]:= (* cost of the tube material and manufacturing is
       taken as the average of 5 steel manufacturer costs, +/- 11%
       Note that these costs are independent of tube segment length *)
      costCoilMfg = (5068734 + 6030090 + 5663768 + 4893966 + 6190206) / 5 / 10^6 // N
Out[254]= 5.56935
In[255]:= costSpiralWeldMfg =
        (3870944 + 548800 + 262904 + 4303000 + 106650 + 296466 + 1809792 + 208867) / 3 / 10^6 // N
Out[255]= 3.80247
In[256]:= nStiffeners = 19552;
      costPerInstalledStiffener = (34 + 41 + 80) / 3 // N;
      costStiffeners = nStiffeners costPerInstalledStiffener / 10^6;
In[259]:= totalCost = totalCostInstall + costCoilMfg + costSpiralWeldMfg + costStiffeners;
In[260]:= (* Adding all costs together *)
```




```
In[263]:= PieChart[pieData, ChartLabels → {"Freight", "Bellows", "Supports",
         "Install", "Leak Tests", "Stiffeners", "Coil", "Spiral Weld"}, PlotLabel \rightarrow
        Style["Relative Costs for Tube Segment Lengths:\n40',50',55',60',65',70'", 14]]
```

Relative Costs for Tube Segment Lengths:

40',50',55',60',65',70'

In[264]:=

Long transport Case

LIGO Fabrication Cost based on LIGO Cost Book

CE Cost for varying tube segment length

Assume LIGO shell thickness and stiffener spacing, but vary the length of the tube segments.

Design Parameters

```
In[308]:= (* not including spare tube segments *)
In[309]:= armLength = 40000; (* m *)
In[310]:= maxTubeSegmentLength = 20; (* m *)
      BTsegmentLength = Table[i, {i, 20}] (* m *)
Out[311]= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}
```

```
In[312]:= selectLengths = {5, 10, 15, 20};
   BTsegmentLength[[selectLengths]]
Out[313]= {5, 10, 15, 20}

In[314]:= nLengths = Length[BTsegmentLength];
   BTdiameter = 1245; (* mm *)
   skelp = 36 × 25.4; (* mm *)
   nTubes = 2 Ceiling[armLength / BTsegmentLength];
   BTthickness = 3; (* mm *)
   BTmaterialDensity = 8 × 10^-6; (* 304L, kg/mm^3 *)

In[320]:= milesFreight = 1000; (* miles *)

In[321]:= stiffenerHeight = 1.75 × 25.4; (* mm *)
   stiffenerWidth = (3 / 16) 25.4; (* mm *)
```

Freight only addresses transportation of tube segments from tube manufacturer to the site for installation.

Shipping of coils from foundry to bake facility, to finishing mill, to tube mfg are considered separately in the Coil Mfg costs.

```
https://arcb.com/blog/things-to-know-about-heavy-haul-trucking
      width < 8.6 \text{ ft } (2.621 \text{ m})
      Height < 13.6 ft (4.145 \text{ m})
      Length < 53 ft (16.154 m) (but I guess the tubes can extend off the end of the bed)
      Gross weight < 80,000 lb
      This implies 4 long tubes per truck bed (2 wide x 2 high)
      Each LIGO BT segment weighs about 2180 kg (4806 lb), so 4 tube segments < 20,000 lb
      Packing density on flat bed:
      If <= 4m length, stand up in 2 rows x 11
      if >4m length, lay down in 2 rows x 2 levels, but ensure that the C.G. of the last tube is < 16m (bed
      length)
In[323]:= (* packingDensity(tubeSegmentLength,nTubesPerLoad) *)
      packingDensity = {{0, 88}, {1, 88}, {2, 44}, {3, 22}, {4, 22},
          \{5, 12\}, \{6, 12\}, \{7, 8\}, \{8, 8\}, \{9, 8\}, \{10, 8\}, \{11, 4\}, \{12, 4\},
          {13, 4}, {14, 4}, {15, 4}, {16, 4}, {17, 4}, {18, 4}, {19, 4}, {20, 4}};
      nTubesPerLoad = Interpolation[packingDensity, InterpolationOrder → 0];
```



```
In[325]:= ListPlot[{Table[{length, nTubesPerLoad[length]}, {length, 1, maxTubeSegmentLength, .1}],
        Table[{length, length nTubesPerLoad[length]}, {length, 1, maxTubeSegmentLength, .1}]},
       Joined → True, Frame → True, FrameLabel → {"Tube Segment Length (m)",
          "Number of Tube Segments Per Load, or\nTotal Length of Tubes in Load (m)"},
       Number of Tube Segments Per Load, or Total Length of Tubes in Load (m)
          60
                                                                  - ♯ Tube Segments/Load
Out[325]=
                                                                   Total Length in Load (m)
          20
           0 -
                                    10
                             Tube Segment Length (m)
      1994 average freight costs as a function of tube length
      https://dcc.ligo.org/LIGO - C1900321
      LIGO_DRD _ 9 _ITEM _ 2. pdf, pg.59 - 62
In[326]:= transMileageCosts = {{12.192, 2.03172}, {15.24, 2.03172}, {16.764, 2.68537},
          {18.288, 3.02828}, {19.812, 3.20449}, {21.336, 4.35449}, {22.86, 4.35449}};
      costTransPerMile = Interpolation[transMileageCosts, InterpolationOrder → 1];
      Off[InterpolatingFunction::dmval];
In[329]:= nLoads = Ceiling[nTubes / nTubesPerLoad[BTsegmentLength]]
Out[329]= {910, 910, 1213, 910, 1334, 1112, 1429, 1250, 1112,
       1000, 1819, 1667, 1539, 1429, 1334, 1250, 1177, 1112, 1053, 1000}
In[330]:= ListPlot[Table[{length, costTransPerMile[length]}, {length, 1, maxTubeSegmentLength, .1}],
       Joined → True, Frame → True,
       FrameLabel → {"Tube Segment Length (m)", "Cost Per Mile ($)"}, GridLines → Automatic]
         3.4
        3.2
        3.0
      Cost Per Mile ($)
        2.6
Out[330]=
        2.4
        2.2
        2.0
```

15

Tube Segment Length (m)

20

```
In[331]:= costFreight = nLoads milesFreight costTransPerMile[BTsegmentLength] / 10^6 // N
Out[331]= {1.84887, 1.84887, 2.46448, 1.84887, 2.71031, 2.25927, 2.90333, 2.53965, 2.25927, 2.03172,
       3.6957, 3.38688, 3.12682, 2.90333, 2.71031, 2.94711, 3.22318, 3.29539, 3.27547, 3.34635}
```

Bellows

See LIGO-C1900321, file LIGO_DRD_9_ITEM2.pdf, pg. 252-255 See LIGO-C1900321, file LIGO_DRD_9_ITEM3.pdf, pg. 128-138

For the LIGO BT, the optimum BT length was determined to be 19.812 m (65' 0"). This optimum was based on a design goal to place the baffles at (or near) the support points. The baffle spacing was specified as 20 m, which was close to the optimum tube length for shipping and construction (19.812) m). The expansion joint spacing then had to be a multiple of 19.812 m.

See LIGO-C1900321, file LIGO_DRD_9_ITEM2.pdf, pg. 255-271

CBI performed a trade study on the formed Bellows (thin-walled vs near full thickness).

Near full thickness bellows are preferred due to lower cost, fewer welds, higher torsion capacity, lower leak risk and lower damage risk. Near full thickness (0.100 in) bellows were just (barely) compliant enough so that additional convolutions were not needed (which would add cost).

See LIGO-C1900321, file LIGO_DRD_9_ITEM2.pdf, pg. 263-265

Discussion of 3 forming methods: roll forming, expanding mandrel (punch forming) and hydroforming. Hydroforming is best but requires the most expensive NRE; best for large volume production.

Rather than attempt to re-design the Bellows (and estimate costs for these variations), in this simple cost estimate model, I'll assume that each Bellows "handles" the expansion from ~40m of tube, and the cost per Bellows, remains the same.

```
In[332]:= nBellows = 2 armLength / 40
Out[332]= 2000
In[333]:= costPerBellows = 3000;
    costBellows = nBellows costPerBellows / 10^6 Table[1, {nLengths}] // N
```

Supports

```
https://dcc.ligo.org/LIGO - C1900321
LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 59 - 62 :
LIGO_DRD _ 9 _ITEM _ 3. pdf, pg. 155 - 156 (repeat) :
See LIGO-C1900321, file LIGO_DRD_9_ITEM2.pdf, pg. 252-255
See LIGO-C1900321, file LIGO_DRD_9_ITEM3.pdf, pg. 128-138
```

For the LIGO BT, the optimum BT length was determined to be 19.812 m (65' 0"). This optimum was based on a design goal to place the baffles at (or near) the support points. The baffle spacing was specified as 20 m, which was close to the optimum tube length for shipping and construction (19.812

m). The expansion joint spacing then had to be a multiple of 19.812 m.

Perhaps BT gravity sag as a function of BT segment length should be calculated to determine the number of required supports. For this simple cost model, I'll assume 1 Fixed Support and 1 Guided Support per Bellows (as is the case for LIGO). Since the CBI cost data doesn't differentiate between fixed and guided, a single support quantity and cost is used.

```
In[113]:= nSupports = 2 nBellows
Out[113]= 4000
In[114]:= costPerSupport = 3800;
      costSupports = nSupports costPerSupport / 10^6 Table[1, {nLengths}] // N;
   Leak Tests
      https://dcc.ligo.org/LIGO - C1900321
      LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 59 - 62:
       LIGO_DRD _ 9 _ITEM _ 3. pdf, pg. 155 - 156 (repeat)
In[116]:= nLeakTests = nTubes;
      costPerLeakTest = 2200;
      costLeakTests = nLeakTests costPerLeakTest / 10^6 // N;
```

Pump Ports

```
https://dcc.ligo.org/LIGO - C1900321
LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 59 - 62:
LIGO_DRD _ 9 _ITEM _ 3. pdf, pg. 155 - 156 (repeat)
```

Pump Ports are not explicitly included in CBI's cost estimate (referenced above).

FWIW a hand written note on pg. 85 of LIGO_DRD_9_ITEM_3.pdf indicates that each Pump Port costs \$3975

Since I don't know the number of required ports, I'll simply scale the LIGO Cost Book number by the CE Length/LIGO Length:

```
In[119]:= costPumpPorts = 1.83 (80 / 16) Table[1, {nLengths}] // N;
```

Installation

```
https://dcc.ligo.org/LIGO - C1900321
      LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 59 - 62 :
      LIGO_DRD _ 9 _ITEM _ 3. pdf, pg. 155 - 156 (repeat) :
In[120]:= nTubeInstalls = 2 nTubes;
     costPerTubeInstall = 1500;
      costTubeInstall = nTubeInstalls costPerTubeInstall / 10^6 // N;
```

Coil Mfg Costs

1992 cost of the tube material and manufacturing is taken as the average of 5 steel manufacturer costs, +/- 11%

Note that these costs are (apparently) independent of tube segment length and thickness for the range under consideration by CBI for LIGO.

Assuming:

- 1) a coil weight of 30,000 lbm, which was the size ordered by CBI
- 2) no welding of coil ends
- 3) spiral welded tube, which requires tube spiral length plus 2 x skelp widths
- 4) 10% scrap recouped

https://dcc.ligo.org/LIGO-C1900321

LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 105 & 247 (repeat):

Coil material procurement costs, including:

cost of coil material (304L)

transport cost to/from bake facility

bake cost

transport cost to/from finishing mill

outgas test costs

cost to level

cost to slit

transport to tube mfg

less cost of 10% scrap steel

Estimate of coil waste so that the number of 65 ft long tubes from a single coil (6) matches the quotes CBI received from spiral tube manufacturers. Corresponds to 1 skelp length at each end of 6 tubes, or 12 x skelp length waste

I've assumed that this as a constant waste weight per coil

```
ln[123] = coilWeight = 30000 \times 0.453592; (* kg *)
      wastePerCoil =
         (Pi /4) (BTdiameter^2 - (BTdiameter - 2 BTthickness)^2) 12 skelp BTmaterialDensity // N;
      wastePerCoil / coilWeight
Out[125]= 0.0755116
In[126]:= BTsegmentWeightUncut = (Pi /4) (BTdiameter^2 - (BTdiameter - 2 BTthickness)^2)
            (BTsegmentLength 1000) BTmaterialDensity // N;
      nTubesPerCoil = Floor[(coilWeight - wastePerCoil) / BTsegmentWeightUncut]
Out[127] = \{134, 67, 44, 33, 26, 22, 19, 16, 14, 13, 12, 11, 10, 9, 8, 8, 7, 7, 7, 6\}
```



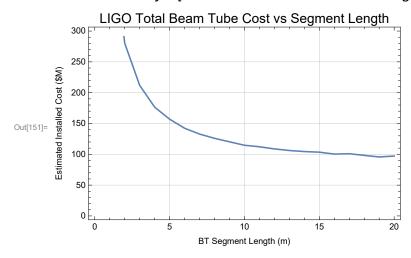
```
In[128]:= nCoils = Ceiling[nTubes / nTubesPerCoil] // N
Out[128]= {598., 598., 607., 607., 616., 607., 602., 625., 635.,
       616., 607., 607., 616., 636., 667., 625., 673., 636., 602., 667.}
In[129]:= baseCostCoil = 27639; (* 304L *)
      freightCostBake = 822;
      costBake = 3000;
      freightFinishingMill = 411;
      costOutgasTest = 2650;
      costLevel = 1500;
      costSlit = 1800;
      freightTubeMfg = 1370 / 2; (*2 coils per trip *)
In[137]:= costCoilMfg = (baseCostCoil + freightCostBake + costBake + freightFinishingMill +
           costOutgasTest + costLevel + costSlit + freightTubeMfg) nCoils / 10^6
Out[137]= {23.0272, 23.0272, 23.3737, 23.3737, 23.7203, 23.3737, 23.1812, 24.0669, 24.4519, 23.7203,
       23.3737, 23.3737, 23.7203, 24.4905, 25.6842, 24.0669, 25.9152, 24.4905, 23.1812, 25.6842
```

Spiral Weld Mfg Costs

```
https://dcc.ligo.org/LIGO-C1900321
LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 113:
```

Spiral welded tube manufacturing cost is taken as the average of 3 manufacturing quotes/estimates for tube manufacturing + equipment costs + material overhead. Costs are not quoted as a function of tube segment length. Presumably shorter length tube segments would cost a little more due to the need to make more transverse cuts, but I don't know this cost.

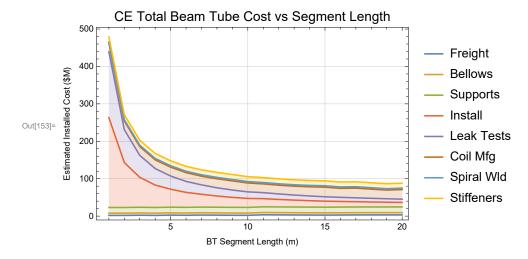
```
In[138]:= costSpiralWeldMfg = Table[1, {nLengths}]
           (3870944 + 548800 + 262904 + 4303000 + 106650 + 296466 + 1809792 + 208867) / 3 / 10^6 // N;
```

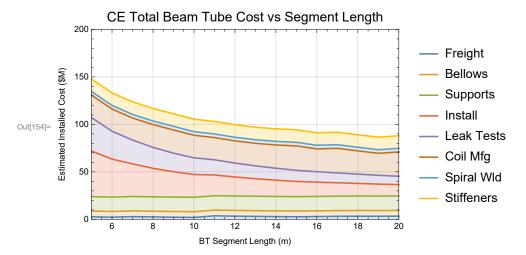

Stiffener Mfg Costs

```
https://dcc.ligo.org/LIGO-C1900321
       LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 139-141 & 282 (repeat):
       BT stiffener material costs (material, painting & welding)
In[139]:= stiffenerSpacing = 758; (* mm, baseline stiffener spacing == LIGO *)
       nStiffeners = 2 armLength 10^3 / 758 // N
Out[140]= 105 541.
```

```
ln[141]:= thicknessBarStock = (3/16) 25.4; (* mm *)
      lengthBarStock = 14 \times 12 \times 25.4; (* mm *)
      unitWeightBarStock = 1.12 \times 0.00148816; (* kg/mm *)
      unitCostBarStock = 1.55 / 0.453592; (* $/kg *)
      costStiffenerMaterial = lengthBarStock unitWeightBarStock unitCostBarStock;
      costPerStiffenerMfg = (34 + 41 + 80) / 3 / / N;
      costFactorStiffenerMfg = costPerStiffenerMfg / costStiffenerMaterial;
      costPerStiffenerWld = 15;
      costStiffeners = Table[1, {nLengths}] nStiffeners
         (costPerStiffenerMfg costFactorStiffenerMfg + costPerStiffenerWld) / 10^6;
```

Total Costs (as a function of tube segment length)


```
In[150]:= totalCost = costFreight + costBellows + costSupports + costTubeInstall +
         costLeakTests + costPumpPorts + costCoilMfg + costSpiralWeldMfg + costStiffeners;
In[151]:= ListPlot[Transpose[Partition[Join[BTsegmentLength, totalCost], nLengths]],
      Joined → True, Frame → True, GridLines → Automatic,
      FrameLabel → {"BT Segment Length (m)", "Estimated Installed Cost ($M)"},
      PlotLabel → Style["LIGO Total Beam Tube Cost vs Segment Length", 14]]
```



In[152]:= plotData = {Transpose[Partition[Join[BTsegmentLength, costFreight], nLengths]], Transpose[Partition[Join[BTsegmentLength, costBellows], nLengths]], Transpose[Partition[Join[BTsegmentLength, costSupports], nLengths]], Transpose[Partition[Join[BTsegmentLength, costTubeInstall], nLengths]], Transpose[Partition[Join[BTsegmentLength, costLeakTests], nLengths]], Transpose[Partition[Join[BTsegmentLength, costCoilMfg], nLengths]], Transpose[Partition[Join[BTsegmentLength, costSpiralWeldMfg], nLengths]], Transpose[Partition[Join[BTsegmentLength, costStiffeners], nLengths]]};

In[153]:= StackedListPlot[plotData, Joined → True, Frame → True, GridLines → Automatic, FrameLabel → {"BT Segment Length (m)", "Estimated Installed Cost (\$M)"}, PlotLabel → Style["CE Total Beam Tube Cost vs Segment Length", 14], PlotLegends → {"Freight", "Bellows", "Supports", "Install", "Leak Tests", "Coil Mfg", "Spiral Wld", "Stiffeners"}]

In[154]:= StackedListPlot[plotData, Joined → True, Frame → True, GridLines \rightarrow Automatic, PlotRange \rightarrow {{5, 20}, {0, 200}}, FrameLabel → {"BT Segment Length (m)", "Estimated Installed Cost (\$M)"}, PlotLabel → Style["CE Total Beam Tube Cost vs Segment Length", 14], PlotLegends → {"Freight", "Bellows", "Supports", "Install", "Leak Tests", "Coil Mfg", "Spiral Wld", "Stiffeners"}]


```
In[155]:= dataTable = Partition[Join[costFreight[[selectLengths]] / totalCost[[selectLengths]],
            costBellows[[selectLengths]] / totalCost[[selectLengths]],
            costSupports[[selectLengths]] / totalCost[[selectLengths]],
            costTubeInstall[[selectLengths]] / totalCost[[selectLengths]],
            costLeakTests[[selectLengths]] / totalCost[[selectLengths]],
            costCoilMfg[[selectLengths]] / totalCost[[selectLengths]],
            costSpiralWeldMfg[[selectLengths]] / totalCost[[selectLengths]],
            costStiffeners[[selectLengths]] / totalCost[[selectLengths]]], nSL];
       Partition: Single or list of positive machine-sized integers expected at position 2 of
            Partition[{0.0172677, 0.0177165, 0.026197, 0.0344423, 0.0382267, 0.0523196, 0.057994, 0.0617549, 0.096841, «15»,
               0.024226, 0.0331573, 0.0367534, 0.0391369, 0.0839412, 0.114888, 0.127348, 0.135606}, nSLJ.
 In[156]:= nSelectLength = Length[selectLengths];
       headerString = Table[0, {nSelectLength}];
       For [i = 1, i < nSelectLength + 1, i++,
         headerString[[i]] = TextString[BTsegmentLength[[selectLengths[[i]]]]]];
       PercentForm[TableForm[dataTable, TableHeadings → {{"Freight", "Bellows", "Supports",
             "Install", "Leak Tests", "Coil Mfg", "Spiral Wld", "Stiffeners"}, headerString}], 2]
Out[159]//PercentForm=
       Partition[
        {1.7%, 1.8%, 2.6%, 3.4%, 3.8%, 5.2%, 5.8%, 6.2%, 9.7%, 13%, 15%, 16%, 31%, 21%, 15%, 12%,
         22%, 15%, 11%, 9.1%, 15%, 21%, 25%, 26%, 2.4%, 3.3%, 3.7%, 3.9%, 8.4%, 11%, 13%, 14%}, nSL]
```

CE Cost for varying stiffener spacing

Shell thickness increases with increased stiffener spacing. Tube segment length is a constant 20 m.

Import Stiffened Design Parameters

```
Import the file created by T2400351-v2 ASME section VIII division 1.nb
                             For varying stiffener spacing (L304L), provides corresponding:
                            shell thickness (t304L),
                            stiffener height (h304L),
                            stiffener thickness (b304L)
                            for 1245 mm OD tube
  In[335]:= data = Import["ASMEdiv1CE304L.dat"];
                            L304L = data[[1]]
Out[336] = \{758, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 9000, 10000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 90000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 90000, 9000, 90000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 9000, 90000, 90000, 9000
                                  11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000,
                                 21000, 22000, 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000,
                                  31000, 32000, 33000, 34000, 35000, 36000, 37000, 38000, 39000, 40000}
```



```
In[337]:= t304L = data[[2]]
Out[337] = \{3.3263, 3.73545, 4.85321, 5.7979, 6.47277, 7.35351, 7.91096, 8.54024, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 0.47277, 
                  9.03984, 9.4595, 9.97078, 10.4541, 10.6829, 10.8296, 10.9287, 11.0051,
                  11.0826, 11.1376, 11.1671, 11.1818, 11.1966, 11.2106, 11.2225, 11.2344,
                   11.2464, 11.2584, 11.2704, 11.2824, 11.2945, 11.3023, 11.3038, 11.3053,
                   11.3069, 11.3084, 11.3099, 11.3115, 11.313, 11.3145, 11.3161, 11.317, 11.317}
 In[338]:= b304L = data[[3]]
Out[338]= \{4.7625\}
In[339]:= h304L = data[[4]]
Out[339]= {53.8122, 58.3276, 71.6007, 79.9638, 86.9274, 91.583, 96.4963, 100.431, 104.271, 107.936,
                   110.95, 113.769, 117.112, 120.483, 123.809, 127.04, 130.12, 133.14, 136.128, 139.062, 141.9,
                   144.654, 147.334, 149.94, 152.476, 154.946, 157.355, 159.707, 162.005, 164.269, 166.511,
                   168.709, 170.864, 172.98, 175.056, 177.097, 179.102, 181.074, 183.015, 184.927, 186.815}
 In[340]:= nSpacings = Length[L304L]
Out[340]= 41
 In[341]: stiffener304L = Transpose[Partition[Join[L304L, h304L], nSpacings]];
               LIGOstiffener = \{\{758, 1.75 \times 25.4\}\};
                ListLogLinearPlot[{stiffener304L, LIGOstiffener}, Joined → True,
                  Frame → True, FrameLabel → {"Spacing Between Stiffeners or Supports (mm)",
                        "Stiffener Height (mm) \n(stiffener thickness = 4.8 mm)"},
                  PlotLabels -> {"ASME 304L\nFS = 3.0", "LIGO\nFS = 2.6"}, PlotStyle → {Red, Blue},
                  PlotMarkers → {{None}, {Automatic}}, GridLines → All]
                         200
                                                                                                                                                                                                 ASME 304L
                                                                                                                                                                                                    FS = 3.0
                         150
               Stiffener Height (mm)
(stiffener thickness = 4.8 mm)
                          100
Out[343]=
                           50
                                                                                                                                                                                              FS = 2.6
                             0
                                              1000
                                                                                                   5000
```

Spacing Between Stiffeners or Supports (mm)

Design Parameters

```
In[344]:= (* not including spare tube segments *)
ln[345] = armLength = 40000; (* m *)
```

```
In[346]:= maxTubeSegmentLength = 20; (* m *)
       BTsegmentLength = 20; (* m *)
In[348]:= selectSpacing = {1, 6, 11, 16, 21};
      nSelectSpacings = Length[selectSpacing];
      L304L[[selectSpacing]]
      t304L[[selectSpacing]]
      h304L[[selectSpacing]]
Out[350]= \{758, 5000, 10000, 15000, 20000\}
Out[351]= {3.3263, 7.35351, 9.97078, 11.0051, 11.1966}
Out[352]= {53.8122, 91.583, 110.95, 127.04, 141.9}
In[353]:= BTdiameter = 1245; (* mm *)
      skelp = 36 \times 25.4; (* mm *)
      nTubes = 2 Ceiling[armLength / BTsegmentLength];
      BTmaterialDensity = 8 \times 10^{-6}; (* 304L, kg/mm<sup>3</sup> *)
In[357]:= milesFreight = 1000; (* miles *)
```

Freight

Freight only addresses transportation of tube segments from tube manufacturer to the site for installation.

Shipping of coils from foundry to bake facility, to finishing mill, to tube mfg are considered separately in the Coil Mfg costs.

```
https://arcb.com/blog/things-to-know-about-heavy-haul-trucking
     width < 8.6 \text{ ft } (2.621 \text{ m})
     Height < 13.6 ft (4.145 m)
     Length < 53 ft (16.154 m) (but I guess the tubes can extend off the end of the bed)
      Gross weight < 80,000 lb
     This implies 4 long tubes per truck bed (2 wide x 2 high)
     Each LIGO BT segment weighs about 2180 kg (4806 lb), so 4 tube segments < 20,000 lb
      Packing density on flat bed:
     If <= 4m length, stand up in 2 rows x 11
     if >4m length, lay down in 2 rows x 2 levels, but ensure that the C.G. of the last tube is < 16m (bed
     length)
In[358]:= (* packingDensity(tubeSegmentLength,nTubesPerLoad) *)
      packingDensity = {{0, 88}, {1, 88}, {2, 44}, {3, 22}, {4, 22},
         {5, 12}, {6, 12}, {7, 8}, {8, 8}, {9, 8}, {10, 8}, {11, 4}, {12, 4},
         {13, 4}, {14, 4}, {15, 4}, {16, 4}, {17, 4}, {18, 4}, {19, 4}, {20, 4}};
     nTubesPerLoad = Interpolation[packingDensity, InterpolationOrder → 0];
```



```
In[360]:= ListPlot[{Table[{length, nTubesPerLoad[length]}, {length, 1, maxTubeSegmentLength, .1}],
         Table[{length, length nTubesPerLoad[length]}, {length, 1, maxTubeSegmentLength, .1}]},
        Joined → True, Frame → True, FrameLabel → {"Tube Segment Length (m)",
           "Number of Tube Segments Per Load, or\nTotal Length of Tubes in Load (m)"},
        GridLines → Automatic, PlotLegends → {"# Tube Segments/Load", "Total Length in Load (m)"}]
      Number of Tube Segments Per Load, or Total Length of Tubes in Load (m)
           60
                                                                      Out[360]=

    Total Length in Load (m)

           20
            0 -
                                       10
                               Tube Segment Length (m)
       1994 average freight costs as a function of tube length
       https://dcc.ligo.org/LIGO - C1900321
      LIGO_DRD _ 9 _ITEM _ 2. pdf, pg.59 - 62
In[361]:= transMileageCosts = {{12.192, 2.03172}, {15.24, 2.03172}, {16.764, 2.68537},
          {18.288, 3.02828}, {19.812, 3.20449}, {21.336, 4.35449}, {22.86, 4.35449}};
       costTransPerMile = Interpolation[transMileageCosts, InterpolationOrder → 1];
      Off[InterpolatingFunction::dmval];
In[364]:= nLoads = Ceiling[nTubes / nTubesPerLoad[BTsegmentLength]]
Out[364]= 1000
In[365]:= ListPlot[Table[{length, costTransPerMile[length]}, {length, 1, maxTubeSegmentLength, .1}],
        Joined → True, Frame → True,
        FrameLabel → {"Tube Segment Length (m)", "Cost Per Mile ($)"}, GridLines → Automatic]
         3.4
         3.2
         3.0
      Mile ($)
         2.8
      Cost Per I
         2.6
Out[365]=
         2.2
         2.0
                                      10
                                                   15
                                                               20
                              Tube Segment Length (m)
```

In[366]:= costFreight = nLoads milesFreight costTransPerMile[BTsegmentLength] / 10^6 x Table[1, {nSpacings}] // N;

Bellows

See LIGO-C1900321, file LIGO_DRD_9_ITEM2.pdf, pg. 252-255

See LIGO-C1900321, file LIGO_DRD_9_ITEM3.pdf, pg. 128-138

For the LIGO BT, the optimum BT length was determined to be 19.812 m (65' 0"). This optimum was based on a design goal to place the baffles at (or near) the support points. The baffle spacing was specified as 20 m, which was close to the optimum tube length for shipping and construction (19.812 m). The expansion joint spacing then had to be a multiple of 19.812 m.

See LIGO-C1900321, file LIGO_DRD_9_ITEM2.pdf, pg. 255-271

CBI performed a trade study on the formed Bellows (thin-walled vs near full thickness).

Near full thickness bellows are preferred due to lower cost, fewer welds, higher torsion capacity, lower leak risk and lower damage risk. Near full thickness (0.100 in) bellows were just (barely) compliant enough so that additional convolutions were not needed (which would add cost).

See LIGO-C1900321, file LIGO_DRD_9_ITEM2.pdf, pg. 263-265

Discussion of 3 forming methods: roll forming, expanding mandrel (punch forming) and hydroforming. Hydroforming is best but requires the most expensive NRE; best for large volume production.

Rather than attempt to re-design the Bellows (and estimate costs for these variations), in this simple cost estimate model, I'll assume that each Bellows "handles" the expansion from ~40m of tube, and the cost per Bellows, remains the same.

```
In[367]:= nBellows = 2 armLength / 40
Out[367]= 2000
In[368]:= costPerBellows = 3000;
       costBellows = nBellows costPerBellows / 10^6 Table[1, {nSpacings}] // N;
```

Supports

```
https://dcc.ligo.org/LIGO - C1900321
LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 59 - 62 :
LIGO_DRD _ 9 _ITEM _ 3. pdf, pg. 155 - 156 (repeat) :
See LIGO-C1900321, file LIGO_DRD_9_ITEM2.pdf, pg. 252-255
See LIGO-C1900321, file LIGO_DRD_9_ITEM3.pdf, pg. 128-138
```

For the LIGO BT, the optimum BT length was determined to be 19.812 m (65' 0"). This optimum was based on a design goal to place the baffles at (or near) the support points. The baffle spacing was specified as 20 m, which was close to the optimum tube length for shipping and construction (19.812 m). The expansion joint spacing then had to be a multiple of 19.812 m.

Perhaps BT gravity sag as a function of BT segment length should be calculated to determine the number of required supports. For this simple cost model, I'll assume 1 Fixed Support and 1 Guided Support per Bellows (as is the case for LIGO). Since the CBI cost data doesn't differentiate between

fixed and guided, a single support quantity and cost is used.

```
In[370]:= nSupports = 2 nBellows
Out[370]= 4000
In[371]:= costPerSupport = 3800;
       costSupports = nSupports costPerSupport / 10^6 Table[1, {nSpacings}] // N;
```

Leak Tests

```
https://dcc.ligo.org/LIGO - C1900321
      LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 59 - 62:
      LIGO_DRD _ 9 _ITEM _ 3. pdf, pg. 155 - 156 (repeat)
In[373]:= nLeakTests = nTubes;
     costPerLeakTest = 2200;
      costLeakTests = nLeakTests costPerLeakTest / 10^6 Table[1, {nSpacings}] // N;
```

Pump Ports

```
https://dcc.ligo.org/LIGO - C1900321
LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 59 - 62:
LIGO_DRD _ 9 _ITEM _ 3. pdf, pg. 155 - 156 (repeat)
```

Pump Ports are not explicitly included in CBI's cost estimate (referenced above).

FWIW a hand written note on pg. 85 of LIGO_DRD_9_ITEM_3.pdf indicates that each Pump Port costs \$3975

Since I don't know the number of required ports, I'll simply scale the LIGO Cost Book number by the CE Length/LIGO Length:

```
In[376]:= costPumpPorts = 1.83 (80 / 16) Table[1, {nSpacings}] // N;
```

Installation

```
https://dcc.ligo.org/LIGO - C1900321
      LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 59 - 62:
      LIGO_DRD _ 9 _ITEM _ 3. pdf, pg. 155 - 156 (repeat) :
|n|3771:= nTubeInstalls = 2 nTubes;
      costPerTubeInstall = 1500;
      costTubeInstall = nTubeInstalls costPerTubeInstall / 10^6 Table[1, {nSpacings}] // N;
```

Coil Mfg Costs

1992 cost of the tube material and manufacturing is taken as the average of 5 steel manufacturer costs, +/- 11%

Note that these costs are (apparently) independent of tube segment length and thickness for the range

under consideration by CBI for LIGO.

Assuming:

- 1) a coil weight of 30,000 lbm, which was the size ordered by CBI
- 2) no welding of coil ends
- 3) spiral welded tube, which requires tube spiral length plus 2 x skelp widths
- 4) 10% scrap recouped

https://dcc.ligo.org/LIGO-C1900321

LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 105 & 247 (repeat):

Coil material procurement costs, including:

cost of coil material (304L)

transport cost to/from bake facility

bake cost

transport cost to/from finishing mill

outgas test costs

cost to level

cost to slit

transport to tube mfg

less cost of 10% scrap steel

Estimate of coil waste so that the number of 65 ft long tubes from a single coil (6) matches the quotes CBI received from spiral tube manufacturers. Corresponds to 1 skelp length at each end of 6 tubes, or 12 x skelp length waste

I've assumed that this as a constant waste weight per coil

```
ln[380] = coilWeight = 30000 \times 0.453592; (* kg *)
      wastePerCoil =
         (Pi /4) (BTdiameter^2 - (BTdiameter - 2 BTthickness) ^2) 12 skelp BTmaterialDensity // N;
      wastePerCoil / coilWeight
Out[382]= 0.0755116
```

Assuming Coil Weight is constant for varying tube thickness, as the stiffener spacing varies:

```
In[433]:= BTsegmentWeightUncut = (Pi /4) (BTdiameter^2 - (BTdiameter - 2 t304L)^2)
          (BTsegmentLength 1000) BTmaterialDensity // N;
     nTubesPerCoil = Floor[(coilWeight - wastePerCoil) / BTsegmentWeightUncut]
     nTubesPerCoil = (coilWeight - wastePerCoil) / BTsegmentWeightUncut
Out[435] = \{6.05968, 5.39772, 4.1583, 3.48342, 3.12193, 2.74996, 2.55734, 2.37011, 0.001435\}
      2.24003, 2.14138, 2.03241, 1.93921, 1.89803, 1.87255, 1.8557, 1.84294,
      1.83017, 1.8212, 1.81645, 1.81408, 1.8117, 1.80945, 1.80755, 1.80565,
      1.80375, 1.80185, 1.79995, 1.79805, 1.79615, 1.79492, 1.79468, 1.79443,
      1.79419, 1.79395, 1.79371, 1.79347, 1.79323, 1.79299, 1.79274, 1.7926, 1.7926}
```



```
In[436]:= nCoils = Ceiling[nTubes / nTubesPerCoil] // N
Out[436]= {661., 742., 962., 1149., 1282., 1455., 1565., 1688., 1786., 1868.,
       1969., 2063., 2108., 2137., 2156., 2171., 2186., 2197., 2203., 2205.,
       2208., 2211., 2213., 2216., 2218., 2220., 2223., 2225., 2227., 2229., 2229.,
       2230., 2230., 2230., 2231., 2231., 2231., 2231., 2232., 2232., 2232.}
In[437]:= baseCostCoil = 27639; (* 304L *)
      freightCostBake = 822;
      costBake = 3000;
      freightFinishingMill = 411;
      costOutgasTest = 2650;
      costLevel = 1500;
      costSlit = 1800;
      freightTubeMfg = 1370 / 2; (*2 coils per trip *)
In[445]:= costCoilMfg =
         (baseCostCoil + freightCostBake + costBake + freightFinishingMill + costOutgasTest +
```

Spiral Weld Mfg Costs

```
https://dcc.ligo.org/LIGO-C1900321
LIGO_DRD _ 9 _ ITEM _ 2. pdf, pg. 113:
```

Spiral welded tube manufacturing cost is taken as the average of 3 manufacturing quotes/estimates for tube manufacturing + equipment costs + material overhead. Costs are not quoted as a function of tube segment length. Presumably shorter length tube segments would cost a little more due to the need to make more transverse cuts, but I don't know this cost.

```
In[446]:= costSpiralWeldMfg = Table[1, {nSpacings}]
           (3870944 + 548800 + 262904 + 4303000 + 106650 + 296466 + 1809792 + 208867) / 3 / 10^6 // N;
```

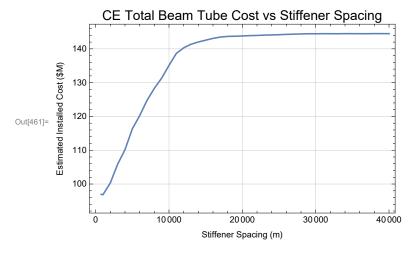
costLevel + costSlit + freightTubeMfg) nCoils Table[1, {nSpacings}] / 10^6;

Stiffener Mfg Costs

```
https://dcc.ligo.org/LIGO-C1900321
                         LIGO_DRD _ 9 _ITEM _ 2. pdf, pg. 139-141 & 282 (repeat):
                         BT stiffener material costs (material, painting & welding)
 ln[447]:= nStiffeners = 2 armLength 10^3 / L304L // N
Out[447] = \{105541., 80000., 40000., 26666.7, 20000., 16000., 13333.3, 11428.6, 10000., 8888.89, 10000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 120000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12000., 12
                            8000., 7272.73, 6666.67, 6153.85, 5714.29, 5333.33, 5000., 4705.88, 4444.44, 4210.53, 4000.,
                             3809.52, 3636.36, 3478.26, 3333.33, 3200., 3076.92, 2962.96, 2857.14, 2758.62, 2666.67,
                             2580.65, 2500., 2424.24, 2352.94, 2285.71, 2222.22, 2162.16, 2105.26, 2051.28, 2000.}
                       Assuming available bar stock every 1/4" in width for the chosen 3/8" thick bar
                         Should really choose next largest size, but here I'm selecting nearest width
```

In[448]:= availableBarStockWidths = Table[2 + i .25, {i, 0, 15}] 25.4;

thicknessBarStock = b304L; (* mm *)

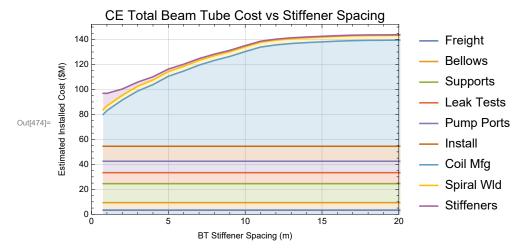

selectedBarStockWidths = Nearest[availableBarStockWidths, h304L];

Use the CBI cost estimate for LIGO stiffeners (1.75" high x 3/8" thick) to scale the cost of stiffeners of other dimensions:

```
ln[451]:= lengthBarStock = 14 × 12 × 25.4; (* mm *)
      unitWeightBarStock = 1.12 \times 0.00148816; (* kg/mm *)
      unitCostBarStock = 1.55 / 0.453592; (* $/kg *)
      costStiffenerMaterial = lengthBarStock unitWeightBarStock unitCostBarStock;
      costPerStiffenerMfg = (34 + 41 + 80) / 3 / / N;
      costFactorStiffenerMfg = costPerStiffenerMfg / costStiffenerMaterial
Out[456]= 2.12585
ln[457] = costStiffenerMaterial = unitCostBarStock selectedBarStockWidths / (1.75 <math>\times 25.4); (* \$/kg *)
In[458]:= costPerStiffenerWld = 15;
      costStiffeners = Table[1, {nSpacings}] nStiffeners
          (costPerStiffenerMfg costFactorStiffenerMfg + costPerStiffenerWld) / 10^6;
```

Total Costs (as a function of stiffener spacing)

```
In[460]:= totalCost = costFreight + costBellows + costSupports + costLeakTests +
         costPumpPorts + costTubeInstall + costCoilMfg + costSpiralWeldMfg + costStiffeners;
In[461]:= ListPlot[Transpose[Partition[Join[L304L, totalCost], nSpacings]],
      Joined → True, Frame → True, GridLines → Automatic,
      FrameLabel → {"Stiffener Spacing (m)", "Estimated Installed Cost ($M)"},
      PlotLabel → Style["CE Total Beam Tube Cost vs Stiffener Spacing", 14]]
```




```
In[462]:= plotData = {Transpose[Partition[Join[L304L/10^3, costFreight], nSpacings]],
         Transpose[Partition[Join[L304L / 10^3, costBellows], nSpacings]],
         Transpose[Partition[Join[L304L / 10^3, costSupports], nSpacings]],
         Transpose[Partition[Join[L304L / 10^3, costLeakTests], nSpacings]],
         Transpose[Partition[Join[L304L / 10^3, costPumpPorts], nSpacings]],
         Transpose[Partition[Join[L304L / 10^3, costTubeInstall], nSpacings]],
         Transpose[Partition[Join[L304L / 10^3, costCoilMfg], nSpacings]],
         Transpose[Partition[Join[L304L / 10^3, costSpiralWeldMfg], nSpacings]],
         Transpose[Partition[Join[L304L / 10^3, costStiffeners], nSpacings]]};
```



```
In[464]:= costFreight[[1]]
Out[464]= 3.34635
 In[465]:= costBellows[[1]]
Out[465]= 6.
 In[466]:= costSupports[[1]]
Out[466]= 15.2
 In[467]:= costLeakTests[[1]]
Out[467]= 8.8
 In[468]:= costPumpPorts[[1]]
Out[468]= 9.15
  In[469]:= costTubeInstall[[1]]
Out[469]= 12.
 In[470]:= costCoilMfg
Out[470] = \{25.4531, 28.5722, 37.0437, 44.2445, 49.366, 56.0277, 60.2635, 64.9998, 04.2635, 64.9998, 04.2635, 64.9998, 04.2635, 64.9998, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2635, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655, 04.2655,
                               68.7735, 71.9311, 75.8203, 79.4399, 81.1728, 82.2895, 83.0211, 83.5987,
                               84.1763, 84.5999, 84.8309, 84.9079, 85.0235, 85.139, 85.216, 85.3315, 85.4085,
                               85.4855, 85.6011, 85.6781, 85.7551, 85.8321, 85.8321, 85.8706, 85.8706,
                               85.8706, 85.9091, 85.9091, 85.9091, 85.9091, 85.9476, 85.9476, 85.9476}
   In[471]:= costSpiralWeldMfg[[1]]
Out[471]= 3.80247
 In[472]:= costStiffeners
Out[472] = \{13.1753, 9.98686, 4.99343, 3.32895, 2.49672, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.42669, 1.24836, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.66448, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99737, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.997757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.99757, 1.9975
                               1.10965, 0.998686, 0.907897, 0.832239, 0.76822, 0.713347, 0.665791, 0.624179,
                               0.587463, 0.554826, 0.525624, 0.499343, 0.475565, 0.453948, 0.434211, 0.416119,
                               0.399475, 0.38411, 0.369884, 0.356674, 0.344375, 0.332895, 0.322157, 0.31209,
                               0.302632, 0.293731, 0.285339, 0.277413, 0.269915, 0.262812, 0.256073, 0.249672}
  In[480]:= costStiffeners[[1]] / totalCost[[1]]
Out[480]= 0.13593
 In[481]:= costBellows[[1]] / totalCost[[1]]
Out[481]= 0.0619021
 In[482]:= (costBellows[[1]] + costStiffeners[[1]]) / totalCost[[1]]
Out[482]= 0.197832
```

ln[474]= StackedListPlot[plotData, PlotRange \rightarrow {{0, 20}, {0, Automatic}}, Joined → True, Frame → True, GridLines → Automatic, FrameLabel → {"BT Stiffener Spacing (m)", "Estimated Installed Cost (\$M)"}, PlotLabel → Style["CE Total Beam Tube Cost vs Stiffener Spacing", 14], PlotLegends → {"Freight", "Bellows", "Supports", "Leak Tests", "Pump Ports", "Install", "Coil Mfg", "Spiral Wld", "Stiffeners"}]

