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Gravitational wave (GW) science has opened new avenues for understanding astrophysical phe-
nomena, with precise signal characterization being essential for interpreting these cosmic events.
However, short-duration terrestrial noise transients, known as “glitches”, complicate this task. A
common strategy for mitigating the impact of glitches involves restricting the analysis to a reduced
frequency band. In our work, we perform parameter estimation on artificial data, which includes
both simulated waveforms and noise realizations. By examining different frequency ranges, we aim
to characterize the typical effects of the frequency restrictions on the inference of the source pa-
rameters. Building on these findings, we generate a statistical test to systemize the application of
these restrictions to glitch-affected real events. Additionally, we focus on evaluating the use of a
DL model in the GW parameter estimation pipeline. By comparing results obtained with the DL
model and the conventional pipeline, we explore the effectiveness of the DL approach in improving

analysis speed and accuracy.

I. INTRODUCTION

Gravitational waves originate predominantly from the
accelerated motion of massive objects, such as the orbital
movement of black holes and neutron stars. This motion
disturbs the fabric of space-time, leading to the propaga-
tion of waves in all directions from the source. As gravi-
tational waves travel through space, they induce tiny ex-
pansions and contractions in the spatial dimensions they
traverse. The measurements of this strain are detected by
ground-based instruments operated by the Laser Interfer-
ometer Gravitational Wave Observatory (LIGO), Virgo,
and KAGRA (LVK) Collaboration. These detectors are
advanced Michelson interferometers, simply consisting of
two perpendicular arms of equal length, each equipped
with mirrors at their ends. A laser beam is split and
sent down each arm, reflecting off the mirrors and then
recombining at a central chamber. When a gravitational
wave passes through, it causes the lengths of the arms
to change slightly. This alters the interference pattern
when the laser beams recombine, allowing the detection
of the gravitational waves in the form of weak signals.

One of the major sources of gravitational waves are
binary black hole mergers and neutron star mergers,
which fall under the category of compact binary coa-
lescences (CBC).The characterization of these waves is
crucial since they carry promising information about the
nature of the compact objects. Accurate source charac-
terization depends on the assumption that detector noise
behaves as stationary Gaussian noise, which is violated
when there are short-duration noise transients, called
“glitches” present in the signal [1]. Glitches can arise
from various reasons, such as instrumental artifacts or
environmental disturbances, and their sources are not
typically directly identifiable. Therefore, it is common

for glitches to occur unpredictably in the signal. In [2],
researchers reported that during the third observing run
(03) [3, 4], the median rate of glitches in the LIGO and
Virgo detectors exceeded one per minute for much of the
run, suggesting that coincidences between glitches and
gravitational wave signals are likely to occur relatively
frequently. Since these glitches corrupt the signal and
invalidate the noise assumptions for typical gravitational
wave source characterization processes, their identifica-
tion and mitigation are crucial for accurate analysis.

The process of identifying and subtracting glitches is
not straightforward, leading to the adoption of various
strategies. One of the most common and sophisticated
methods is the BayesWave algorithm [5]. This algorithm
assumes that the strain data comprises Gaussian noise,
a gravitational wave signal, and a glitch, which is mod-
eled as a sum of sine-Gaussian wavelets. As the result of
the algorithm, a posterior distribution of time series of
the glitch is obtained, and the mitigation is conducted by
randomly selecting a sample from the posterior, and sub-
tracting it from the data [2]. Despite the common use of
the BayesWave algorithm, various studies, including [6]
and [3], have demonstrated that the method may poten-
tially leave residual artifacts within the signal, which is
likely due to the probability of a randomly drawn sample
wavelet accurately capturing the precise characteristics
of the glitch is low.

Another approach for glitch mitigation is gwsubstract
algorithm [7], which uses information from auxiliary
channels. However, the accuracy of this subtraction
method depends on the accuracy of the auxiliary sen-
sor and the transfer function estimate [2, 6]. The men-
tioned systematic and statistical uncertainties of these
two methods poses the risk that even after BayesWave
or gwsubtract algorithm is used, the data can still be



undersubstracted, as shown in [3, 6].
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FIG. 1: The spectrogram demonstrates the GW191109
event data for Livingston in the frequency domain,
showing features that indicate the data is
glitch-affected. It highlights the definite glitch at 24 Hz
and the potential glitch at 36 Hz, marked by pink
annotations, as noted in [3].

Although the glitches are commonly dealt with by
eliminating data in the time domain, it is possible to
come across cases where the glitch only affects a specific
frequency range, as shown in Figure 1. In such instances,
addressing data quality issues might involve restricting
the analysis to a narrower frequency range [9]. We refer
to these restrictions as “frequency cuts”.
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FIG. 2: The plot shows posteriors for x.g at 20, 30, 40,
and 50 Hz, along with the prior. The transition from 20
Hz and 30 Hz to 40 Hz and 50 Hz is particularly
noteworthy due to the drastic shift observed. This
result was first presented in [2].

A notable example of frequency cuts for glitch mitiga-
tion is the case of GW191109. As illustrated in Figure 2,
the posterior distributions for x.g parameter shift sig-
nificantly when the frequency cut at 40 Hz is applied.
This behavior is unusual because losing data due to a

frequency cut typically results in posteriors becoming
less informative and more prior-like, rather than show-
ing such a drastic change. Since frequency cuts are not
applied through a systematic process, it is difficult to de-
termine whether the analysis at 20 Hz (full-band) or 40
Hz is more reliable.

Therefore, our work proposes the development of a ro-
bust test to systematize the application of frequency cuts,
determining their necessity based on the impact on pa-
rameter estimation (PE). A crucial point to emphasize
is that we only need to subtract the glitch—by applying
frequency cuts—if it directly affects the parameter esti-
mation process. If the glitch does not introduce bias or
alter the posterior distributions, the frequency cuts are
deemed unnecessary. In our analyses, preserving infor-
mation is critical, and we aim to avoid sacrificing valuable
data unless it is clear that the glitch introduces bias.

To conduct such a diagnostic test, an effective method
is to use a reference distribution as a benchmark for
real cases. We propose utilizing generated injections,
which consist of a pure gravitational wave signal com-
bined with Gaussian noise, in line with typical assump-
tions. As the reference distributions become more reli-
able with an increasing number of generated injections,
the computational cost of inferring these injections will
rise accordingly. Therefore, we seek a parameter estima-
tion method that is faster than our conventional tools,
such as Bilby [10], to manage this increased computa-
tional demand efficiently. To address this, we employ
DINGO [11], a simulation-based inference model that
utilizes a likelihood-free approach. DINGO is a neu-
ral posterior estimator (NPE) network, which has previ-
ously demonstrated the capability to produce inferences
rapidly—typically within seconds—while maintaining ac-
curacy comparable to Bilby and taking several days for
training [11].

With this context in mind, the structure of the report
is as follows: In Section II, we describe Bayesian infer-
ence for CBC using the two methods: Bilby and DINGO.
Additionally, we introduce and characterize the kp sta-
tistical test. In Section III, we apply the Bilby method to
50 injections drawn from GW191109, inspecting the pos-
terior evolutions with frequency cuts and generating ref-
erence distributions for our statistical test. Our findings
indicate that GW191109 falls significantly outside the ex-
pected distributions for 40 and 50 Hz, suggesting anoma-
lies in the data below 40 Hz. In Section IV, we utilize the
DINGO method to replicate the described methodology
and compare the results to those obtained from Bilby.
We find that while DINGO has notable difficulties in ac-
curately representing the posteriors, its statistical test re-
sults exhibit a consistency with those derived from Bilby
for GW191109.



II. METHODOLOGY
A. Bayesian Inference: Using Bilby

In order to perform source characterization for CBC
signals, we conduct Bayesian inference with the Bilby
pipeline. Bayesian inference applies Bayes’ theorem,
which allows for estimating the posterior distributions of
the source parameters by combining the observed data d,
the likelihood function p(d|f), and the prior distribution
p(0) for the parameters. Bayes’ theorem is expressed as:

p(d|0)p(6)
p(d)

where p(0|d) is the posterior distribution, p(d|f) is the
likelihood, p(0) is the prior distribution, and p(d) is the
evidence, which acts as a normalizing factor. The ob-
served data d consists of both the gravitational wave sig-
nal and the detector noise.

In typical parameter estimation pipelines for gravita-
tional waves, the detector noise is assumed to be sta-
tionary and Gaussian. This assumption simplifies the
likelihood function, as it implies that the difference be-
tween the data and the waveform should be Gaussian
noise. The noise is modeled by the power spectral den-
sity (PSD), which characterizes the distribution of noise
across different frequencies at the time of detection. The
waveform model, h(f), and the noise model forms the
basis of the likelihood function.

The likelihood function in the frequency domain is typ-
ically given by:

p(0ld) = (1)

N 2
Inp(d|8) = — = > (W +1In (2m,§)> ,

2 . %

where k represents the frequency bin index, oy is the
noise amplitude spectral density, and h(6) is the wave-
form model [10]. This likelihood function is crucial in
evaluating how well a given set of parameters 6 explains
the observed data, taking into account the noise charac-
teristics modeled by the PSD.

Since the evaluation of the likelihood function requires
the generation and comparison of numerous waveform
models across a large parameter space, the process is
computationally expensive and time-consuming. A vast
number of waveform evaluations are needed to sample
from the posterior distributions, significantly increasing
the computational cost.

For this analysis, we focus on the effective spin param-
eter, Xxes Which represents the mass-weighted projection
of the individual component spins along the orbital an-
gular momentum vector, and is defined as:

(ml&’l + mgc_b'g) - L

Xeff =
¢ m1+m2

where m; and mo are the component masses of the
binary, d@; and d@s are their respective dimensionless spin
vectors, and L is the unit vector along the orbital angu-
lar momentum. A non-zero value of yes can indicate
aligned or anti-aligned spins with the orbital angular
momentum. Yeg IS a crucial parameter in astrophysics
as it provides insights into the binary’s formation his-
tory. Aligned spins often suggest isolated binary evolu-
tion, whereas anti-aligned spins may indicate a dynamical
formation origin [8].

In this study, we model waveforms using the IMRPhe-
nomXPHM approximant [12] and employ prior distribu-
tions aligned with the GW191109 event. The waveform
model is conditioned on these prior distributions, which
integrate our prior understanding of the source parame-
ters. Specifically, the chirp mass is uniformly distributed
between 35 and 175 Mg:

35 <M, <175

The mass ratio ¢ ranges from 0.25 to 1:

025<¢g<1

The spin magnitudes a; and ao are uniformly dis-
tributed between 0 and 0.99:

0 S ay, as S 0.99

The tilt angles 61 and 65 follow a sine distribution. The
luminosity distance dy, is uniformly sampled between 100
and 7000 Mpc:

100 < dr <7000

For DINGO, we use a different prior at the inference
time, sampling from a uniform comoving volume distri-
bution between 100 and 2000 Mpc:

100 < d. <2000

The PSD used is also specific to GW191109.

For generating injections, Bilby is used with the same
priors and PSD, along with a maximum frequency of 512
Hz and a duration of 4 seconds.

B. Bayesian Inference: Using DINGO

Unlike the classical approaches, DINGO trains a neural
network to approximate the Bayesian posterior distribu-
tion over source parameters using simulated data rather
than direct likelihood evaluations. The process involves
generating a multitude of simulated datasets, each with
its corresponding parameters, which are used to train a
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FIG. 3: The figure illustrates the kp values for the 30 Hz (pink), 40 Hz (red), and 50 Hz (blue) posteriors. The
dotted line represents the imaginary line Jy = = 4 y, showing the expected evolution of the JS distances as the
frequency cutoff increases. This line reflects the progression from the full-band analysis with a 20 Hz cutoff to the
most extreme case, where the posterior includes no additional information and matches the prior. In this scenario,
the JS distance between the posterior and the 20 Hz posterior is equal to Jy. The light blue curve tracks the
evolution of the JS distances of a single injection as the frequency cutoff is raised.

specific type of neural network known as a normalizing
flow. This approach integrates the prior by sampling pa-
rameters and incorporates the likelihood through data
simulation. [11]

With DINGO, we also incorporate importance sam-
pling as a key component to enhance our results. In
DINGO’s importance sampling strategy, DINGO-IS [13],
the approach of reweighting allows samples drawn from
one posterior distribution to be used for estimating a dif-
ferent posterior distribution. Given a set of n samples
0; ~ q(f]d) (the proposal distribution), each sample is
assigned an importance weight:

W, — p(d|0:)p(6;)
q(0ild)
where p(6;|d) represents the target posterior distribution.

The accuracy of this sampling process is evaluated using
the “effective number of samples”, denoted as neg, which
Neff = =

is estimated by:
1
= =n|—-7].
2w} 1+ (22)”

And the sample efficiency defined as:

(3 wi)®

TNeff
= " (0,1).
e=" ¢ 0,1

High individual weights relative to the average weight w
increase the variance o2, which reduces neg. [13, 14]
Low efficiency can often be caused by the overlap be-
tween regions of low posterior for the approximate model
and regions of high posterior for the target model. In
such cases, this mismatch results in disproportionately
high weights for certain samples [14]. Consequently, the
final distribution becomes dominated by a small subset

of high-weight samples, while other samples contribute
minimally. This effect reduces n.g and means fewer sam-
ples are effectively representing the target distribution.

C. Statistical Analysis: kp Test

To evaluate whether applying frequency cuts is nec-
essary, we develop a statistical test called “xkp”. The
purpose of this test is to examine how posterior distri-
butions evolve with different frequency limits and assess
whether frequency cuts mitigate bias in the PE process.

The process begins by using the preferred PE method
to infer the injections and obtain posterior distributions
for the xeg parameter across different frequency cut-offs,
specifically at 20, 30, 40, and 50 Hz. We then compare
these distributions in two key ways:

1. Jensen-Shannon (JS) Distance Between Pos-
teriors and Prior: We compute the JS distance
between each of the posterior distributions (from
20, 30, 40, 50 Hz) and the prior distribution for
Xefi- The JS distance is a measure of similarity
between two probability distributions, providing a
symmetric and finite divergence score. Mathemati-
cally, for two distributions P and @, the JS distance
is defined as:

JSD(P||Q) = % (Dicr,(P||M) + Dir (QI|M))

where M is the point-wise mean of P and @, and
Dk, is the Kullback-Leibler divergence. We com-
puted the JS distance using the Scipy implemen-
tation [15]. We use this distance to quantify how



much the posterior shifts away from the prior as we
change the frequency cut.

2. JS Distance Between Posteriors and the 20
Hz Posterior: The second step is to compute the
JS distance between each posterior (30, 40, 50 Hz)
and the 20 Hz posterior. This helps identify how
the posteriors change as we increase the frequency
cut-off.

Next, we plot these JS distances on a two-dimensional
graph, where the x-axis represents the JS distance be-
tween the posterior and the prior, and the y-axis rep-
resents the JS distance between the posterior and the
20 Hz posterior, as shown in Figure 3. We then
draw an imaginary line, = + y = Jy, where Jy =
JSD(posteriory, prior). This line represents the bound-
ary that posteriors of unbiased data should generally fol-
low, while allowing reasonable deviations.

1. Computation of kp

To assess the behavior of posteriors at different fiin
values, we compute the distance of each point (x,y) on
the plot (where = and y are the JS distances) from the Jy
line, as illustrated in the same Figure 3. This distance
measures how far the posteriors at each frequency cut
deviate from the expected bias-free evolution. We nor-
malize this distance by dividing it by Jy, producing the
‘kp’ statistic for each case.

2. Interpretation of Kp

Under the null hypothesis—where the injections pro-
vide a reference distribution containing only CBC signals
and Gaussian noise without any glitches—the kp values
should follow a predictable distribution. If the test case
exhibits no bias in the posteriors, the kp values will align
with this expected distribution. However, if the bias in
the posteriors is reduced by applying a frequency cut at
a particular fui, value, the kp value will diverge signif-
icantly from the null distribution because the posteriors
are changing drastically when the bias affecting the PE
process is reduced.

Thus, if the kp test shows significant divergence, it
suggests that the frequency cut was beneficial for reduc-
ing bias. Conversely, if the kp values remain close to the
expected distribution, this implies that the frequency cut
was unnecessary, as the glitch was likely not affecting the
parameter estimation process. The overarching goal is to
avoid unnecessary loss of information by applying fre-
quency cuts only when they provide a clear benefit in
reducing bias.

III. APPLICATION OF xp TEST WITH BILBY

For the application, we evaluate the GW191109 event
and compare it against reference distributions of kp, cre-
ated using 50 injections. To accomplish this, we perform
inference on the GW191109 event with Bilby and com-
pute the JS distances for the real data. These computed
JS distances are then compared with those for the 50 in-
jections, as outlined in Section ITC. The traces of these
JS distances are visualized in Figure 4. Subsequently,
we compute kp values for the real data and compare
them against the reference distributions by examining
histograms, as shown in Figure 5.

The results suggest that the frequency range that coin-
cides with the potential glitch shown in Figure 1, which
is the 30-40 Hz range, may be introducing bias, as evi-
denced by the observed significant divergence in kp val-
ues when the frequency cut is changed from 30 Hz to 40
Hz. The kp values at 30 Hz fall within the reference
distribution, indicating consistency between the data at
fmin = 20 Hz and fmin = 30 Hz. This implies that either
both cases are unbiased or they exhibit a similar degree
of bias. Likewise, the close correspondence between the
JS distance and kp results for 40 Hz and 50 Hz suggests
that any variation between these intervals is negligible
and primarily due to information loss, rather than the in-
troduction or elimination of bias within this interval. Al-
though the disruption in consistency reveals clear issues
in the 30-40 Hz frequency range, we still cannot assert
with confidence that using a 40 Hz cut is more reliable
than full-band analysis. This investigation is still in its
early stages, and further evidence is required to assess the
reliability of these analyses fully. Our findings are consis-
tent with previous tests suggesting potential anomalies in
the 30-40 Hz range, as noted in [3], highlighting the need
for continued scrutiny to better understand the data and
its implications.

IV. APPLICATION OF kp TEST WITH DINGO

To utilize DINGO as our rapid parameter estimation
pipeline, we trained the network with a dataset consist-
ing of 4 million waveforms. The training incorporated
frequency masking using both DINGO and DINGO-BNS
[16]. In this setup, frequency cuts were applied to the
waveforms before they were processed by the embedding
network. During the training phase, random frequency
masking was employed between the specified upper fimin
value and the actual minimum frequency of the data,
enabling the network to adapt to variations within this
frequency range.

Importance sampling was also employed to enhance the
network’s performance. The results demonstrate that all
injections have an efficiency of less than 0.15%. This sug-
gests that the current model is not sufficiently accurate
in capturing the target posterior distributions. Fig. 8 ex-
emplifies the efficiency and IS weights for a single injec-
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FIG. 4: Light blue lines illustrate the evolution of JS distances for the injections inferred with Bilby, while the
golden line represents the GW191109 event. The significant deviation of the golden line from the injections at 40
and 50 Hz suggests that the posterior evolution with these frequency cut-offs diverges notably from the expected

behavior of unbiased data.

tion. The posterior distributions obtained for the single
injection are also shown in Fig. 9.

The low efficiency observed necessitates the use of a
large number of samples to achieve meaningful and inter-
pretable results. However, this approach demands con-
siderable computational effort, which negates the poten-
tial computational advantages of DINGO compared to

Bilby. As such, despite its intended purpose of providing
faster PE, DINGO did not show a significant computa-
tional cost benefit over Bilby for our analysis.

Subsequently, we computed the JS distances and xp
statistics using the injections inferred with the DINGO
network, employing the same methodology as used with
Bilby. The results of these computations are visualized
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FIG. 5: The histograms illustrate the distributions of kp values for injections with fu,in set at 30, 40, and 50 Hz,
along with the xkp value for GW191109. Vertical lines represent the 5th and 95th percentiles. For 30 Hz, the xp
value falls within the reference distribution, suggesting that the data is consistent within the 20-30 Hz range. In
contrast, the kp value for 40 Hz is significantly outside the reference distribution, indicating a marked change in the
posteriors when applying a 40 Hz frequency cut. The xp value for 50 Hz is similar to that for 40 Hz, suggesting that
the posteriors do not exhibit significant changes between the 40 and 50 Hz intervals.

in Figs. 6 and 7, respectively.

As observed in the visualizations, the JS results for the
injections, while not closely resembling those of Bilby,
demonstrate an agreement in detecting the divergence of
GW191109 from the injections in our analysis. The ref-
erence distributions generated for kp are crucial for the

reliability of this test. The fact that DINGO’s distri-
butions do not align well with those produced by Bilby
is a notable concern, as this misalignment suggests dis-
crepancies in how DINGO models the underlying data.
However, despite these differences, both pipelines clas-
sify the real data consistently, indicating that the overall
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FIG. 6: Light blue lines illustrate the evolution of JS distances for the injections inferred with DINGO, while the

golden line represents the GW191109 event. Although the JS distance evolution of the posteriors of the individual

injections does not align closely with the results from Bilby, the golden line shows a similar significant divergence
from the injections, consistent with the trend observed in the Bilby analysis.

test outcome remains unchanged for comparative anal-
ysis. This suggests a tentative possibility that DINGO
may exhibit lower performance for individual inferences;
however, it appears to show a tendency toward correct-
ness when applied to a population of data. Nevertheless,
this notion remains speculative and lacks sufficient evi-
dence to draw firm conclusions.

V. CONCLUSIONS

In this study, we generated simulated data and con-
ducted PE using two methods: Bilby and DINGO. The
DINGO model was trained on a dataset constructed
in accordance with the priors and noise PSD from the
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FIG. 7: The histograms display the distributions of kp values for injections with fu, set at 30, 40, and 50 Hz,
alongside the kp value for GW191109. The gray histograms represent Bilby’s results. Although DINGO’s
distributions do not align closely with Bilby’s, both pipelines yield consistent classifications regarding the placement
of the real data within or outside the distributions across different fi,;, values. This suggests that, despite
differences, the comparative analysis provides similar outcomes for real data classification.

GW191109 event. We compared the performance of both
pipelines in the inference of parameters for our simulated
injections and observed that DINGO demonstrated no-
tably low efficiency. This result suggests that further re-
finement of the network is necessary to achieve accurate
and reliable analysis.

We further created and applied a statistical test to

systematically evaluate the impact of frequency cuts on
parameter estimation. By applying both inference meth-
ods independently, we identified that the inconsistency in
the results primarily arises within the 30-40 Hz frequency
range. This suggests a possible shift in the behavior of
the parameter estimation process in this range, leading
to a disruption in consistency. While these findings high-
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(b) Plot illustrating the importance sampling weights for
the posterior distribution of the selected injection. The
plot reveals that most samples have low weights, while a
few samples exhibit significantly higher weights, identifying
them as the effective samples. Low sampling efficiency
reflects the suboptimal performance of the network.

FIG. 8: The figure corresponds to the statistics for the inference of a single injection at the minimum frequency
limit of 20 Hz; however, similar features are observed across all frequency limits.

light the need for further investigation, the current re-
sults are insufficient to definitively determine whether
a full-band analysis or the application of a 40 Hz fre-
quency cut offers a more reliable approach for analyzing
the GW191109 event.

Our results highlight the complexities involved in ap-
plying frequency cuts for mitigating glitches in grav-
itational wave signals. Systematizing this process is
of paramount importance, as the availability of high-
quality, credible data is essential for making precise in-
ferences about the source parameters—especially the ef-
fective spin parameter xeg, which plays a critical role in
determining the formation origin of the binary system.

Moreover, while our analysis was based on 50 injec-
tions, we recognize that a larger number of injections
may be required to establish more robust reference dis-
tributions for each event. This reinforces the continued
need for a fast and user-friendly PE pipeline, both for
the purposes of our study and for similar research ef-
forts, such as those referenced in [8]. Although DINGO
shows considerable promise, our findings suggest that its
current implementation did not deliver optimal efficiency
in the context of our analysis.

Despite being in its preliminary stages, our work
presents a promising framework for systematically eval-
uating the frequency-cutting process in cases involving

complex and uncertain glitches. With further investiga-
tion and the use of a more efficient pipeline, we antici-
pate that this method will yield more definitive findings,
particularly in upcoming observing runs of the LVK Col-
laboration. The continued refinement of this framework
will be crucial in enhancing its capacity to address the
challenges posed by the subtle intricacies of glitch miti-
gation.
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FIG. 9: Plots illustrating the posterior distributions obtained using DINGO-IS for the m, ms, Xes, and X,
parameters. While a slight shift in y.g is observed as fii, is increased, the results are not sufficiently reliable,
indicating that the network did not accurately model the target posterior distributions.
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