
Exploring the Impact of Frequency Cuts on Gravitational-Wave Parameter Estimation

Sena Kalabalık
Boğaziçi University, Turkey

Mentors: Lucy M. Thomas, Rhiannon Udall and Derek Davis
LIGO, California Institute of Technology, Pasadena

Project Proposal
LIGO Caltech SURF Program 2024

Gravitational-wave science has empowered a new era in astrophysical exploration, with the char-
acterization of gravitational-wave signals holding crucial importance. However, accurately charac-
terizing these signals poses challenges, especially in the presence of short-duration noise transients,
known as ”glitches.” A specific strategy employed to address this issue and mitigate the effects
of glitches involves cutting a particular frequency range off the signal. In this study, we aim to
delve into the critical role that frequency cuts play in gravitational-wave analysis. Through system-
atic analysis and simulation-based experiments, incorporating data injections and utilizing a neural
posterior estimator, we will investigate the effects of different frequency cut configurations on our
interpretations of parameter posterior distributions across a diverse array of characteristic waves.

I. INTRODUCTION

Gravitational waves originate predominantly from the
accelerated motion of massive objects, such as the orbital
movement of black holes and neutron stars. This motion
disturbs the fabric of space-time, leading to the propaga-
tion of waves in all directions from the source. Traveling
at the speed of light, these cosmic ripples convey valu-
able information about their source’s characteristics and
provide insights into the fundamental nature of gravity.
As gravitational waves travel through space, they induce
tiny expansions and contractions in the spatial dimen-
sions they traverse. The measurements of this strain are
made possible by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) and the Virgo Collaboration
(LVC). The LVC operates three detectors: two LIGO
detectors located in the United States and one Virgo de-
tector in Italy. The detectors are specialized versions of
a Michelson interferometer, which simply consists of two
equally long, perpendicular arms with mirrors at their
ends. A laser beam is split and sent down each arm, re-
flecting off the mirrors and then recombining at a central
detector. When a gravitational wave passes through, it
causes the lengths of the arms to change slightly. This
alters the interference pattern when the laser beams re-
combine, allowing scientists to detect the gravitational
waves in the form of weak signals.

One of the major sources of gravitational waves are bi-
nary black hole mergers and neutron star mergers, which
fall under the category of compact binary coalescences
(CBC).The characterization of these waves is especially
crucial since they carry promising information about the
nature of compact objects. When a signal is detected,
the source characterization is made possible by employ-
ing Bayesian inference, which relies on having established
models for both the signals and the detector noise. In the
context of gravitational waves, these signal models are
represented by waveform predictions h(θ), which are con-

tingent upon various source parameters θ, such as masses
and locations of the objects. Meanwhile, the detector
noise is typically assumed to be stationary and Gaus-
sian, characterized by a certain spectrum that can be
empirically estimated. Collectively, these models yield
the likelihood p(d|θ) for the observed strain data d, pre-
sumed to comprise both signal and noise components. By
selecting a prior p(θ) over the parameters, the posterior
distribution is determined through Bayes’ theorem as:

p(θ|d) = p(d|θ)p(θ)
p(d)

, (1)

where p(d) acts as a normalizing factor termed the evi-
dence. This posterior distribution encapsulates our be-
liefs regarding the source parameters, given the observed
data.[1]
In order to accomplish the inference, we have chosen

to utilize the DINGO method [1] over other conventional
methods commonly used in LVC, such as LALInference
[2] and Bilby [3]. The primary reason for this choice is the
imperative need for speed in conducting numerous tri-
als of parameter estimations. Traditional methods such
as LALInference and Bilby employ stochastic algorithms
like Markov chain Monte Carlo (MCMC) to character-
ize the posterior distribution by drawing samples from
it. However, these algorithms are computationally inten-
sive, demanding numerous likelihood evaluations for each
independent posterior sample. Each likelihood evalua-
tion necessitates a waveform simulation, making the en-
tire inference process time-consuming. However, DINGO
is a neural posterior estimation (NDE) model, and has
shown to achieve both significantly reduced analysis time
and high accuracy. As a likelihood-free and simulation-
based inference model, the simple principle of DINGO is
to generate numerous simulated datasets, each with its
corresponding parameters, and utilize these datasets to
train a specific type of neural network called a normaliz-
ing flow, which is employed to approximate the posterior
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distribution. Once the network is trained, it can rapidly
produce new posterior samples following a detection.[1]

Accurate source characterization depends on the spe-
cific assumptions about the behavior of the detec-
tor noise, however, these assumptions are violated
when there are short-duration noise transients, called
“glitches” present in the signal [4]. Glitches can arise
from various reasons such as instrumental artifacts or
environmental disturbances, however, their sources are
not typically directly identifiable, therefore it is not un-
common for glitches to occur unpredictably in the signal.
Throughout their third observing run (O3) [5, 6], the me-
dian rate of glitches in the LIGO and Virgo detectors
has been reported to have surpassed 1 per minute for the
majority of the duration, which indicates that the coinci-
dence of the glitches with gravitational-wave signals are
expected quite commonly [7]. Since these glitches corrupt
the signal and invalidate the noise assumptions for typi-
cal gravitational-wave source characterization processes,
their identification and mitigation are crucial for accurate
analysis.

The process of identifying and subtracting glitches is
not straightforward, leading to the adoption of various
strategies. One of the most common and sophisticated
methods is the BayesWave algorithm [8], which models
the glitch and subtracts it by only using the strain data.
The algorithm assumes that the strain data consists of
Gaussian noise, a gravitational-wave signal, and a glitch.
It models the glitch as a sum of sine-Gaussian wavelets,
and these wavelets are marginalized over the parame-
ters using a trans-dimensional Markov chain Monte Carlo
(MCMC). As the result of the algorithm, a posterior dis-
tribution of time series of the glitch is obtained, and the
mitigation is conducted by randomly selecting a sample
from the posterior, and subtracting it from the data [7].
Despite the common use of the BayesWave algorithm,
various studies, including [9] and [5], have demonstrated
that the method may potentially leave residual artifacts
within the signal, which is not unexpected since the prob-
ability of a randomly drawn sample wavelet accurately
capturing the precise characteristics of the glitch is low.

Another approach for glitch mitigation is gwsubstract
algorithm [10], which uses information from auxiliary
channels. The algorithm assumes that the measured
strain is a linear combination of time series from differ-
ent sources, where one of these sources can be modeled as
the convolution of a witness time series and an unknown
transfer function. In this approach, the transfer function
between the auxiliary sensor and the strain data channel
is determined and used to estimate the contribution of
the noise source to the strain data. However, the accu-
racy of this subtraction method depends on the accuracy
of the auxiliary sensor and the transfer function estimate
[7, 9]. The mentioned systematic and statistical uncer-
tainties of these two methods poses the risk that even
after BayesWave or subtract algorithm is used, the data
can still be undersubstracted, as shown in [5, 9].

Although the glitches are commonly dealt with by

eliminating data in the time domain, it is possible to
come across cases where the glitch only affects a specific
frequency range. In such instances, addressing data qual-
ity issues might involve employing a narrower frequency
range during the analysis [11]. This strategy has been
adopted in the cases of [5, 9]. In [5], it has been re-
ported that after the application of these methods, the
identified glitch is considered unmitigated if the data sur-
rounding the event are inconsistent with Gaussian noise.
In such cases, they evaluated the SNR lost by restrict-
ing the frequency range of data considered in parameter
inference to fully remove the glitch. If the SNR loss is
below 10%, they used the reduced frequency range in
the analyses. Otherwise, they have used the nominal fre-
quency range. Similarly in [9], to further investigate the
relation between the potentially under-substractive glitch
mitigation strategies and the estimated spin-precession
posteriors, they have limited the frequency range above
a progressively increasing lower limit, and evaluated the
SNR values as well as posteriors of various parameters for
each lower limit. The results showed that even though
SNR loss was small, the posterior for the spin-precession
parameter χp became less informative when a more in-
creased lower limit was used, possibly indicating that the
glitch remnants were causing a misleading estimation of
the posterior.
While previous studies, including [9] and [5], have ex-

plored the benefits of constraining the frequency range
of data primarily for mitigating the remnants of glitches,
our investigation suggests that frequency cuts may have
overlooked implications. An example of this concern can
be found in [7]. In this study, all three methods described
have been employed and compared by their SNR values
and posterior distributions. As shown in the Figure 1,
when the lower frequency limit was raised, the posteriors
for spin parameters became less informative, and more
influenced by the prior. Expectedly, the SNR loss was
significant when higher limits were placed on the lower
frequency. The results concluded that the glitch sub-
traction strategies narrowed the posterior distributions,
and only caused a little change in SNR, therefore indi-
cating their superiority over frequency cuts. However,
of particular interest is the unexpected revelation that
different frequency cut configurations led to distinctly
different estimations for the same parameter, implying
a complex scenario. As shown in Figure 1, the figure
demonstrated a significant differentiation in the posteri-
ors for the χeff parameter, with noticeable shifts across
the plot, when different frequency range limits were ap-
plied. This demonstration implies a sophisticated rela-
tion between frequency cuts and source characterization
for gravitational-wave signals.

II. OBJECTIVE

The goal of this research is to investigate the intricate
relationship between frequency cuts and the estimation
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FIG. 1. Graphs illustrating the posterior distributions of
matched-filter signal-to-noise ratio (SNR) in the LIGO Liv-
ingston detector ρL (Top), effective spin parameter χeff

(Middle), and effective precession parameter χp (Bottom)
across various mitigation approaches for two seperate cases,
GW191109 (Left) and GW200129 (Right). Reproduced from
[7].

of source characteristics in gravitational-wave data analy-
sis. Our study will employ a systematic approach involv-
ing data injection, network training, and posterior analy-
sis. Our methodology includes generating simulated sig-
nal+noise datasets, implementing various frequency cut
configurations, and training neural networks to obtain
posterior distributions of source parameters for simulated
gravitational-waveforms. By analyzing the resulting pos-
terior distributions, we seek to understand how different
frequency cut limits affect the estimation of each source
parameter separately.

This analysis will shed light on how different parame-
ters react to frequency cuts, and also enable us to inter-
pret these results across a wide range of waveform char-
acteristics. Ultimately, we plan to establish a definitive
understanding of the relationship between source charac-
teristics and frequency ranges. We anticipate that this
research will deepen our insight into the intricate nature
of gravitational-wave signals, and we aim to pave the way
for more informed and refined approaches to signal clean-
ing, mitigation processes, and gravitational wave analysis
techniques in future studies.

III. APPROACH

To achieve our research objectives, we will first sim-
ulate gravitational-wave waveforms using the IMRPhe-
nomPv2 model [12] and inject them into Gaussian noise.
While glitches are not initially included in our plan, we
may also consider incorporating them into the generated

data to conduct further investigations, although this as-
pect is not yet confirmed. Similarly, given that the choice
of waveform models plays a significant role in the param-
eter estimation process due to their respective strengths
and limitations, we might also consider exploring alter-
native waveform models and assessing their impact on
the results. The simulated data will be designed to en-
compass various source characteristics. By generating
a range of waveform configurations, we will be able to
explore how different signal properties interact with fre-
quency cuts.
Next, we will implement various ranges of frequency

cuts to mimic different signal processing scenarios. Each
set of frequency cuts will correspond to a distinct training
setup for the DINGO network. Therefore, we will train
multiple DINGO networks with different frequency cut
configurations.
Once the networks are trained, we will feed them with

the injected data to obtain posterior distributions for the
signal parameters. These posterior distributions will be
analyzed, and following the acquisition of the posterior
distributions, we will derive various statistics and con-
duct comprehensive analyses to examine and gain in-
sights into the relationship between frequency cuts and
parameter estimation.

IV. TIMELINE

This program will span a duration of 10 weeks, struc-
tured mainly into two separate phases. The initial weeks
will primarily focus on preparatory activities and train-
ing, while the following weeks will center on implementa-
tion and rigorous testing. The tentative objectives out-
lined for this schedule are as follows:

A. Training Phase

• Acquiring proficiency in working with computer
systems and relevant tools

• Familiarizing oneself with pertinent literature and
research in the field

• Studying the syntax of DINGO and mastering cod-
ing procedures necessary for network training and
achieving desired outcomes

• Conducting training for neural networks

• Strategizing analysis plans and delineating specifics
for targeted focus

• Preparing data injections for experimentation

• Concurrently, conducting tests to compare various
aspects of the DINGO model with the alternative
models
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B. Implementation Phase

• Implementing various frequency cut configurations
on injected data

• Testing the neural network with injected data to
derive posterior distributions

• Analyzing resultant data and generating requisite
statistics for comprehensive interpretation

• Preparing for final reporting and presentations,
which involves summarizing findings
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