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Gravitational-wave science has empowered a new era in astrophysical exploration, with the char-
acterization of gravitational-wave signals holding crucial importance. However, accurately charac-
terizing these signals poses challenges, especially in the presence of short-duration noise transients,
known as ”glitches.” A specific strategy employed to address this issue and mitigate the effects
of glitches involves cutting a particular frequency range off the signal. In this study, we aim to
delve into the critical role that frequency cuts play in gravitational-wave analysis. Through system-
atic analysis and simulation-based experiments, incorporating data injections and utilizing a neural
posterior estimator, we will investigate the effects of different frequency cut configurations on our
interpretations of parameter posterior distributions across a diverse array of characteristic waves.

I. INTRODUCTION

Gravitational waves originate predominantly from the
accelerated motion of massive objects, such as the orbital
movement of black holes and neutron stars. This motion
disturbs the fabric of space-time, leading to the propaga-
tion of waves in all directions from the source. Traveling
at the speed of light, these cosmic ripples convey valu-
able information about their source’s characteristics and
provide insights into the fundamental nature of gravity.
As gravitational waves travel through space, they induce
tiny expansions and contractions in the spatial dimen-
sions they traverse. The measurements of this strain are
made possible by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) and the Virgo Collaboration
(LVC). The LVC operates three detectors: two LIGO
detectors located in the United States and one Virgo de-
tector in Italy. The detectors are specialized versions of
a Michelson interferometer, which simply consists of two
equally long, perpendicular arms with mirrors at their
ends. A laser beam is split and sent down each arm, re-
flecting off the mirrors and then recombining at a central
detector. When a gravitational wave passes through, it
causes the lengths of the arms to change slightly. This
alters the interference pattern when the laser beams re-
combine, allowing scientists to detect the gravitational
waves in the form of weak signals.

One of the major sources of gravitational waves are bi-
nary black hole mergers and neutron star mergers, which
fall under the category of compact binary coalescences
(CBC).The characterization of these waves is especially
crucial since they carry promising information about the
nature of compact objects. When a signal is detected,
the source characterization is made possible by employ-
ing Bayesian inference, which relies on having established
models for both the signals and the detector noise. In the
context of gravitational waves, these signal models are
represented by waveform predictions h(θ), which are con-

tingent upon various source parameters θ, such as masses
and locations of the objects. Meanwhile, the detector
noise is typically assumed to be stationary and Gaus-
sian, characterized by a certain spectrum that can be
empirically estimated. Collectively, these models yield
the likelihood p(d|θ) for the observed strain data d, pre-
sumed to comprise both signal and noise components. By
selecting a prior p(θ) over the parameters, the posterior
distribution is determined through Bayes’ theorem as:

p(θ|d) = p(d|θ)p(θ)
p(d)

, (1)

where p(d) acts as a normalizing factor termed the evi-
dence. This posterior distribution encapsulates our be-
liefs regarding the source parameters, given the observed
data.[1]
In order to accomplish the inference, we have chosen

to utilize the DINGO method [1] over other conventional
methods commonly used in LVC, such as LALInference
[2] and Bilby [3]. The primary reason for this choice is the
imperative need for speed in conducting numerous tri-
als of parameter estimations. Traditional methods such
as LALInference and Bilby employ stochastic algorithms
like Markov chain Monte Carlo (MCMC) to character-
ize the posterior distribution by drawing samples from
it. However, these algorithms are computationally inten-
sive, demanding numerous likelihood evaluations for each
independent posterior sample. Each likelihood evalua-
tion necessitates a waveform simulation, making the en-
tire inference process time-consuming. However, DINGO
is a neural posterior estimation (NDE) model, and has
shown to achieve both significantly reduced analysis time
and high accuracy. As a likelihood-free and simulation-
based inference model, the simple principle of DINGO is
to generate numerous simulated datasets, each with its
corresponding parameters, and utilize these datasets to
train a specific type of neural network called a normaliz-
ing flow, which is employed to approximate the posterior
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distribution. Once the network is trained, it can rapidly
produce new posterior samples following a detection.[1]

Accurate source characterization depends on the spe-
cific assumptions about the behavior of the detec-
tor noise, however, these assumptions are violated
when there are short-duration noise transients, called
“glitches” present in the signal [4]. Glitches can arise
from various reasons such as instrumental artifacts or
environmental disturbances, however, their sources are
not typically directly identifiable, therefore it is not un-
common for glitches to occur unpredictably in the signal.
Throughout their third observing run (O3) [5, 6], the me-
dian rate of glitches in the LIGO and Virgo detectors
has been reported to have surpassed 1 per minute for the
majority of the duration, which indicates that the coinci-
dence of the glitches with gravitational-wave signals are
expected quite commonly [7]. Since these glitches corrupt
the signal and invalidate the noise assumptions for typi-
cal gravitational-wave source characterization processes,
their identification and mitigation are crucial for accurate
analysis.

The process of identifying and subtracting glitches is
not straightforward, leading to the adoption of various
strategies. One of the most common and sophisticated
methods is the BayesWave algorithm [8], which models
the glitch and subtracts it by only using the strain data.
The algorithm assumes that the strain data consists of
Gaussian noise, a gravitational-wave signal, and a glitch.
It models the glitch as a sum of sine-Gaussian wavelets,
and these wavelets are marginalized over the parame-
ters using a trans-dimensional Markov chain Monte Carlo
(MCMC). As the result of the algorithm, a posterior dis-
tribution of time series of the glitch is obtained, and the
mitigation is conducted by randomly selecting a sample
from the posterior, and subtracting it from the data [7].
Despite the common use of the BayesWave algorithm,
various studies, including [9] and [5], have demonstrated
that the method may potentially leave residual artifacts
within the signal, which is not unexpected since the prob-
ability of a randomly drawn sample wavelet accurately
capturing the precise characteristics of the glitch is low.

Another approach for glitch mitigation is gwsubstract
algorithm [10], which uses information from auxiliary
channels. The algorithm assumes that the measured
strain is a linear combination of time series from differ-
ent sources, where one of these sources can be modeled as
the convolution of a witness time series and an unknown
transfer function. In this approach, the transfer function
between the auxiliary sensor and the strain data channel
is determined and used to estimate the contribution of
the noise source to the strain data. However, the accu-
racy of this subtraction method depends on the accuracy
of the auxiliary sensor and the transfer function estimate
[7, 9]. The mentioned systematic and statistical uncer-
tainties of these two methods poses the risk that even
after BayesWave or subtract algorithm is used, the data
can still be undersubstracted, as shown in [5, 9].

Although the glitches are commonly dealt with by

eliminating data in the time domain, it is possible to
come across cases where the glitch only affects a specific
frequency range. In such instances, addressing data qual-
ity issues might involve employing a narrower frequency
range during the analysis [11]. This strategy has been
adopted in the cases of [5, 9]. In [5], it has been re-
ported that after the application of these methods, the
identified glitch is considered unmitigated if the data sur-
rounding the event are inconsistent with Gaussian noise.
In such cases, they evaluated the SNR lost by restrict-
ing the frequency range of data considered in parameter
inference to fully remove the glitch. If the SNR loss is
below 10%, they used the reduced frequency range in
the analyses. Otherwise, they have used the nominal fre-
quency range. Similarly in [9], to further investigate the
relation between the potentially under-substractive glitch
mitigation strategies and the estimated spin-precession
posteriors, they have limited the frequency range above
a progressively increasing lower limit, and evaluated the
SNR values as well as posteriors of various parameters for
each lower limit. The results showed that even though
SNR loss was small, the posterior for the spin-precession
parameter χp became less informative when a more in-
creased lower limit was used, possibly indicating that the
glitch remnants were causing a misleading estimation of
the posterior.
While previous studies, including [9] and [5], have ex-

plored the benefits of constraining the frequency range
of data primarily for mitigating the remnants of glitches,
our investigation suggests that frequency cuts may have
overlooked implications. An example of this concern can
be found in [7]. In this study, all three methods de-
scribed have been employed and compared by their SNR
values and posterior distributions. When the lower fre-
quency limit was raised, the posteriors for spin param-
eters became less informative, and more influenced by
the prior. Expectedly, the SNR loss was significant when
higher limits were placed on the lower frequency. The
results concluded that the glitch subtraction strategies
narrowed the posterior distributions, and only caused a
little change in SNR, therefore indicating their superior-
ity over frequency cuts. However, of particular interest
is the unexpected revelation that different frequency cut
configurations led to distinctly different estimations for
the same parameter, implying a complex scenario. The
figures obtained demonstrated a significant differentia-
tion in the posteriors for the χeff parameter, with no-
ticeable shifts across the plot, when different frequency
range limits were applied. This demonstration implies a
sophisticated relation between frequency cuts and source
characterization for gravitational-wave signals.

II. OBJECTIVES

The primary objective of this research is to analyze
the impact of different frequency cuts on parameter es-
timation results for compact binary coalescences. This



3

involves systematically examining how variations in fre-
quency cuts influence the posterior distributions of grav-
itational wave signals. Given that current frequency
cut strategies for noise mitigation lack a systematic ap-
proach, this study aims to establish a more educated and
reliable framework, potentially reducing incorrect esti-
mations in PE results.

Additionally, this research seeks to explore the feasi-
bility and effectiveness of utilizing a deep learning (DL)
model, DINGO, for the PE pipeline. By comparing
the results obtained from the conventional PE pipeline,
Bilby, with those derived from DINGO, the study aims
to evaluate DINGO’s reliability and efficiency for large-
scale analysis. This investigation is not only significant
for our analysis, but also for the ongoing observing run,
O4, where traditional methods may be limited by the
large amount of computations needed. A successful in-
tegration of DL algorithms could enhance the speed and
the efficiency of parameter estimation, thereby improving
overall analysis capabilities.

III. CURRENT PROGRESS

To achieve my research objectives, I first aimed to com-
prehend the Dingo pipeline to prepare for utilizing it in
subsequent steps of my research. I analyzed the event
GW150914 by following an official Dingo tutorial [12].
This analysis involved four steps: generating a waveform
dataset, generating an ASD dataset, training the net-
work, and performing inference. These steps required
only configuration file edits, not custom code manipula-
tion, which is advantageous for handling a large number
of tasks in the more advanced applications.

In the first step, the configuration file included in-
formation and preferences for the generated waveforms,
such as priors, waveform generator specifications, and
domain specifications. For simplicity, no compression
was applied. The configuration settings specified the fre-
quency domain (f min, f max, delta f), the waveform
generator (approximant: IMRPhenomD, f ref: 20.0), and
intrinsic priors (e.g., mass constraints, spin components,
and chirp mass).

The second step required setting another config-
uration file to generate the ASD dataset. The
settings in asd dataset settings.yaml included at-
tributes like sampling frequency (f s), time segment
length (time psd), segment duration (T), and window
type (Tukey window). These settings defined how the
ASD was estimated using segments of noise data from
detectors H1 and L1 during the O1 observing run. For
computational efficiency in this simple model, only one
ASD was generated and used for noise realization.

For network training, it was important to specify the
neural network’s features, which consist of two compo-
nents: a normalizing flow (neural spline flow) and an em-
bedding network. Key settings for the model included the
number of flow transforms and hidden dimensions. The

training configuration specified hyperparameters such as
the number of epochs and optimizer settings. This ap-
proach considered extrinsic parameters during training
to reduce computational costs, rather than generating
waveforms for each parameter set.

In the final step, inference was performed using the
dingo pipe command, allowing for the analysis and ma-
nipulation of the results. The resulting posterior distri-
butions for the 11 parameters of GW150914 are shown
in Figure 1. While the results were not highly promising,
this was expected due to the simplified workload for this
analysis.

Another milestone in preparing for my analysis in-
volved becoming proficient with Bilby and mastering es-
sential tools and classes for data manipulation. I uti-
lized the prior class to construct, evaluate, and sam-
ple from priors, while also creating insightful plots. Ad-
ditionally, working with the WaveformGenerator and
Interferometer classes enabled me to bridge theoretical
waveforms with realistic detector observations, highlight-
ing key detector features affecting waveform projections
and noise realizations.

One of the pivotal concepts I explored was noise re-
alization. This included loading the actual PSD of the
event GW191109 into the detector simulation, using this
ASD to accurately set the strain data and simulate realis-
tic noise conditions. As part of these processes, I worked
in both time domain (TD) and frequency domain (FD),
honing my skills in performing effective Fourier and In-
verse Fourier transforms using Bilby. I also employed
tools such as whitening to enhance plot readability and
interpretability.

Furthermore, I gained proficiency in injecting sig-
nals into detector simulations, illustrating these findings
through plotted comparisons in both TD domain and
spectrogram, as shown in Figure 2 and Figure 3 respec-
tively. As part of my exercises, I also applied a strate-
gic method of subtracting injected waveforms to analyze
residuals. I plotted these in Figure 4 and Figure 5 to
assess their compatibility and verify alignment with ex-
pected noise levels.

Weekly seminars have also been quite productive for
my learning journey, providing invaluable insights into
CBC parameter estimation methodologies, modeling and
characterization of the detectors, solving equations nu-
merically with Python, and testing general relativity
(GR). These sessions have also enhanced my practical
skills, such as navigating computational tools and effi-
ciently running codes on both my local machine and the
computer clusters.

Another enriching experience was our visit to the Han-
ford LIGO site, where I gained firsthand exposure to the
intricate workings of gravitational wave detectors. This
visit not only bolstered my enthusiasm for the field but
also deepened my understanding of detector operations
and the complexities involved in gravitational wave de-
tection.
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FIG. 1. This figure illustrates the posterior distribution results for 11 parameters of GW150914. The less promising results are
anticipated due to the simplified workload for this analysis.

IV. NEXT STEPS

The planned next steps outlined for this project are as
follows:

• Prepare 100 injections to be processed by the
pipelines.

• Train two DINGO networks for each frequency cut:
one using a single ASD for computational efficiency
and the other using multiple ASDs for more robust
results.

• Conduct inference with both DINGO and Bilby for
each frequency cut range, and compare the results
to assess DINGO’s reliability in large-scale analysis.

• Continue inference with DINGO based on the re-

sults to derive posterior distributions for the injec-
tions at each frequency cut.

• Analyze the outcomes to develop systematic con-
clusions, improving comprehension and strategies
for implementing frequency cuts.

• Aim to utilize DINGO for analyzing O4 data.
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