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1 Overview

This report presents a summary of my SURF project at 40m laboratory, Caltech conducted
during summer of 2024. The goal of the project was to assist in decreasing the training
time of an RL agent by providing a faster way of generating 40m IFO using neural networks
instead of Finesse which is ~ 30 times slower that the neural networks with first order laser
mode.

My very initial steps involved basic simulations of a Fabry-Perot cavity, followed by tran-
sitioning from kat script-based programming to using modern model constructor functions.
This phase laid the groundwork for understanding the simulation environment and the nec-
essary coding practices.

Subsequent tasks included performing mode scans, analyzing transmitted power variations,
and simulating a high-finesse Fabry-Perot cavity with RF modulation, to accommodate
myself with finesse and with the physics of optical cavities. I also explored using astigmatism
to identify the peaks and understand the degeneracies when multiple modes resonate at the
same cavity length. This led to the identification of peaks corresponding to specific mode
orders and their sidebands.

I further found thermally robust and isolated carrier peaks by simulating thermal effects,
basically by changing radii of curvature of both mirrors, and identifying cavity lengths that
maintain isolated peaks across the range of radii of curvature. A significant portion of the
time was spend doing supervised learning aimed at training a neural network that copies the
output of finesse and generates 31 signals corresponding to total power and demodulated
powers at 3 ports of the IFO. A lot of time was spent on further improving the training
as well the the result’s accuracy and providing a scientific way to quantify the accuracy
while ascertaining whether the trained model will be succesful to help the RL agent properly
lock the PRMI. I used Neptune Al and Optuna for hyperparameter optimization in neural
network training. The integration facilitated efficient hyperparameter tuning and experiment
tracking, streamlining the model development process. The later part of the report explains
the idea behind the approach taken to quantify the accuracy of the neural network compared
to finesse and I have also shown some plots for real life data to show how far we are from
the realistic scenario. Future work includes extending the supervised learning approach to
replicate Finesse simulation outputs, particularly for higher-order modes.

2 Learning Finesse and Higher-Order Mode Sweep Anal-
ysis
2.1 Finesse: A Python Package for Optical Interferometer Simulation

Finesse is a Python package used for simulating optical interferometers and systems with op-
tical components. According to the Finesse Documentation, "It employs frequency-domain
optical modeling to create accurate quasi-static simulations of arbitrary interferometer con-
figurations.” It is based on an object-oriented structure and provides a wide range of utility
functions to simplify complex simulation tasks, such as simulating a Fabry-Perot cavity
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with a Gaussian laser beam containing multiple Higher-Order Hermite-Gauss modes up
to order 12. The learning process involved reviewing the API documentation: https:
//finesse.ifosim.org/docs/latest/api/index.html and studying the physics behind
Finesse: https://finesse.ifosim.org/docs/latest/physics/index.html

2.2 Short summary of my initial work for learning finesse and simulating various
optical cavities with specific conditions

I started by exploring Finesse with a basic Fabry-Perot cavity simulation, focusing on tran-
sitioning from the traditional kat script to modern model constructor functions. I reviewed
the API documentation to identify functions for adding optical components, linking them,
and defining parameters.

Next, I conducted a mode sweep simulation up to maxtem 12, where different Hermite-Gauss
modes resonate at distinct cavity lengths. This produced peaks in transmitted power as the
cavity length was varied.

I then simulated a high-finesse Fabry-Perot cavity with RF modulation, plotting the trans-
mission power against the frequency offset. The plot revealed multiple peaks within the free
spectral range (FSR), corresponding to various maxtem values, each having a sideband due
to RF modulation. I further analyzed astigmatism to understand degeneracies, finding that
certain mode combinations (e.g., (0,7), (1,6)) resonate at the same cavity length.

Subsequently, I aimed to calculate robust L., values where carrier peaks would be isolated
from other peaks. This involved calculating peak positions and checking for isolated peaks
in a specific frequency range, considering thermal effects on the mirror’s curvature. The
final results showed a safe range of Lc,, values (1.32-1.37 m) that remained robust against
curvature variations.

Finally, I plotted these values as an animation.
Link of Animation 1
Link for animation 2
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Figure 1: Image Source: Finesse documentation

2.3 Interesting Thing to Notice

In the second animation is that the peak value of the peaks oscillates. The output power
expression for the CRq peak is given as (for critical coupling):

T
Prans = 1
’ 1+ R? — 2R cos(2kL) (1)
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Similar expressions give the power transmitted when higher modes are resonant. The length
at which the modes oscillate is changing with a change in RoC, and the change rate is
faster if the mode order is higher. Thus, for a faster change in L, the power expression will
oscillate faster due to the presence of cos(2kL) in the denominator, where L corresponds to
the resonating cavity length for the mode.

3 Supervised Learning for copying finesse 40m simula-
tion output

We use the FINESSE 40m package to model the interferometer, which is configured with
parameters specific to the 40-meter interferometer. This package provides the interferom-
eter’s response to changes in its degrees of freedom and serves as the foundation of our
environment. However, since FINESSE is inherently static, it does not simulate how these
degrees of freedom evolve over time. Therefore, we must develop additional code to account
for these changes.

A key challenge is the large number of samples needed for the RL agent’s training, which
is limited by FINESSE’s extensive call times. To address this, we created a neural network
model that mimics FINESSE’s output, drastically reducing computational overhead. For
higher-order mode simulations (HG eigenmodes), we expect up to a three-order reduction in
runtime, and for lower-order simulations, the neural network approach is already about 30
times faster than FINESSE.

NOTE: Before jumping into training the neural network for the 40m finesse model, I started
with a supervised learning exercise on MNIST data set to gain some idea of the training
process while incorporating neptune and optuna integration. The code can be found in the
github code base.

3.1 Neptune-Optuna Integration

Optuna is an open-source hyperparameter optimization framework that scans over all the
hyperparameter values available while training a neural network model and helps us auto-
matically find the best combination of hyperparameters for the model.

On the other hand, Neptune Al is a cloud-based platform that provides tools and infrastruc-
ture to build, deploy, and manage machine learning models and experiments.

Integrating Optuna with Neptune Al allows us to leverage Optuna’s efficient hyperparame-
ter optimization capabilities directly from within the Neptune AI platform. This integration
streamlines the model development process by enabling users to configure and launch Op-
tuna optimization studies seamlessly within Neptune AI’s collaborative workspace. The
integration also ensures that all hyperparameter values, metrics, and model artifacts gener-
ated during the optimization process are automatically tracked and logged in Neptune Al,
facilitating analysis, reproducibility, and collaboration among team members.
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3.2 What did I do?

3.2.1 Signals generation for 40m PRMI

I have generated 31 signals which are as follows:

e POP power (reflected from Power recycling mirror)

e REFL power (Power from Anti-reflective surface for the beam splitter)
e AS power (Power passing through Signal recycling mirror)

e POP demodulated at f1 frequency (Both I and Q phase signal)

e POP demodulated at 2f1 frequency (Both I and Q phase signal)
e POP demodulated at 2 frequency (Both I and Q phase signal)

e POP demodulated at 22 frequency (Both I and Q phase signal)
e AS demodulated at fl frequency (Both I and Q phase signal)

e AS demodulated at 2f1 frequency (Both I and Q) phase signal)

e AS demodulated at {2 frequency (Both I and QQ phase signal)

e AS demodulated at 2f2 frequency (Both I and Q phase signal)

e REFL demodulated at fl frequency (Both I and Q phase signal)
e REFL demodulated at 2fl frequency (Both I and Q phase signal)
e REFL demodulated at {2 frequency (Both I and Q phase signal)
e REFL demodulated at 2f2 frequency (Both I and Q phase signal)
e REFL demodulated at 3fl frequency (Both I and Q phase signal)
e REFL demodulated at 3f2 frequency (Both I and Q phase signal)

The code used for data generation is in this ipynb file

In the provided code, I have generated the required signals using finesse_40m library.

e [ import all the necessary libraries and then initialise the neptune run at the beginning
to start logging my constants values.

e [ modify the ”"Forty_Meter_Factory” function imported from finesse 40m package to
turn off the default DOFs and turn off all the default detectors to that the finesse
model does not do unnecessary computations to generate signals which I won’t be
using.

page 6


https://github.com/CaltechExperimentalGravity/RL-Cavity-LockAcquisition/blob/main/supervised_learning/40m_DRMI/40m_PRMI.ipynb

LIGO-T2400258~

Where | put my
detectors

=1+

REFL

J O

Figure 4: Image giving a rough idea of where the signals are picked from

READOUT

e [ start with adding my required DOFs for the PRMI which is the MICH length and

the PRCL length.

e [ then add all my 17 detectors as follows:

-
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15
16
17
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19

model.add ([

PowerDetector (’P0’, model.BS.p3.0),
PowerDetector (’REFL’, model.PRM.pl.o),
PowerDetector (’AS’, model.SRM.pl.o0),
PowerDetectorDemodl (’POdemodfl’, model.BS.p3.0, freql),
PowerDetectorDemodl (’POdemod2f1’, model.BS.p3.0, 2 * freql),
Demodulating 1t parallel, but note that the demodulation s
done in series
PowerDetectorDemodl (’POdemodf2’, model.BS.p3.0, freq2),
PowerDetectorDemodl (’POdemod2f2’, model.BS.p3.0, 2 * freq2),
PowerDetectorDemodl (’REFLdemodf1’, model.PRM.pl.o, freql),
PowerDetectorDemodl (’REFLdemod2f1’, model.PRM.pl.o, 2 * freql),
PowerDetectorDemodl (’REFLdemodf2’, model.PRM.pl.o, freq2),
PowerDetectorDemodl (’REFLdemod2f2’, model.PRM.pl.o, 2 * freq2),
PowerDetectorDemodl (’REFLdemod3f1’, model.PRM.pl.o, 3 % freql),
PowerDetectorDemodl (’REFLdemod3f2’, model.PRM.pl.o, 3 * freq2),
PowerDetectorDemodl (’ASdemodf1’, model.SRM.pl.o, freql),
PowerDetectorDemodl (’ASdemod2f1’, model.SRM.pl.o, 2 * freql),
PowerDetectorDemodl (’ASdemodf2’, model.SRM.pl.o, freq2),
PowerDetectorDemodl (> ASdemod2f2°’, model.SRM.pl.o, 2 * freq2),
ID)

#

The last 14 are the demodulated signals which are then split into its real and imaginary

part to give I and @ phase signals and thus giving my 31 signals.
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e [ generate 1000x1000 grid in the MICH-PRCL phase plane and then do a 2D scan to
generate data for 10° different pair of values for MICH and PRCL.

e [ then finally split the demodulated signals into their real and imaginary parts and
then save the whole data for preservation in case of crashes like "OUT_OF_MEMORY
ERROR”.

e [ can either move to another code file for the sake of training my NN or I can do it in
the same file, but it is much better to do it in another code file otherwise the chances
of crashes are very high and then you will need to restart the training a lot many time
before it runs successfully.

Now my data is generated and I will use it to train my neural network. The code is given
here: GitHub Repository.

3.2.2 Normalising and denormalising the data

Note that for efficient training I cannot just input the data straight away. I need to prepare
the data, normalise it and then define functions to denormalise it back to its usual scale on
both input and output axis.

I do not use the scikit scalers to do the job because my signals have sharp peaks which
might not be properly resolved due to not so high input resolution(which I chose to limit
the runtime to normal timescales) hence I first shift the data between 0 to 1 range and then
take a log to make sure that the small peaks are also enhanced and the width of the peaks
are also broadened. The max and min value of the array and the scale factor is all saved
to ensure that the output of the neural network can be properly denormalised to bring the
data back to its usual scale.

Hence I define such normalising and denormalising functions which also returns the min and
max values and the scale factors which wil Ibe used as input in denormalising function.

3.2.3 Training the neural network

This provides an overview of the Python script I used that utilizes Optuna for hyperparam-
eter optimization and Neptune for experiment tracking in training a neural network.

e The script begins by importing necessary libraries, including TensorFlow, NumPy, and
the Optuna and Neptune integrations. The API token for Neptune is read from a file
for secure access, and a new run is initiated to track parameters and metrics.

e Data is loaded and normalized using my custon normalisation functions. This prepro-
cessing ensures the training data is in an appropriate range, enhancing model perfor-
mance.

e Optuna is employed to optimize the neural network architecture through the create model (trial)
function, where hyperparameters such as the number of units in each layer and the
learning rate are suggested. An objective function is defined to train the model and
return the loss, allowing Optuna to evaluate various configurations.
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e Additionally, a custom callback, LogMetricsCallback, is implemented to log training
metrics (loss and accuracy) to Neptune at the end of each epoch. This integration
provides real-time monitoring and analysis of the model’s performance.

e After finding the optimal hyperparameters, the model is trained, and the training
history is logged into Neptune. Once training is complete, the model is saved, and
predictions are made, with results stored in a file.

Throughout the process, Neptune Al tracks and logs all the hyperparameters, trial results,
training metrics, and final model performance, allowing us to visualize and analyze the
optimization process and model performance within the Neptune Al platform.

Plotting Data Using Matplotlib

The script generates visualizations of simulated and predicted data using Matplotlib, focusing
on several signals derived from the loaded datasets. The plotting section is organized into
two main loops, one for the first three signals and another for the remaining signals.

1. Setup for Plotting

A figure is created with four vertical subplots using plt.subplots(4, 1, figsize=(10,
30)), ensuring that each subplot can display different visual aspects of the data.

2. Data Preparation

For each signal, data is reshaped into two dimensions (N by M) to facilitate plotting.

e Error Calculations:

— The relative error is computed using the logarithm of the absolute difference
between the actual (zs,) and predicted (2preq) values divided by the actual values.

— The absolute error is similarly calculated.

3. Creating Plots

e Subplot 1: Displays the actual simulated data (zg,) using a grayscale colormap. A
colorbar is added to indicate the values of the finesse simulated.

e Subplot 2: Shows the neural network predictions (zpeq) in the same format as the
actual data, allowing for visual comparison.

e Subplot 3: Visualizes the relative error as a percentage using a custom colormap
(cmap_residual) that highlights errors, with a colorbar indicating the error ranges.

e Subplot 4: Presents the absolute error using a coolwarm colormap, facilitating identi-
fication of areas where the model’s predictions significantly deviate from actual values.
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4. Colorbars

Colorbars for each subplot help interpret the values. The colorbar ticks are customized to
display values in scientific notation where necessary.

5. Uploading to Neptune

Each generated figure is uploaded to Neptune for tracking and visualization of results over
different runs.

6. Saving Figures

Plots are saved as JPEG files in a specified directory, facilitating later analysis or presenta-
tion.

7. Finalizing the Run

After all plots are generated, the Neptune run is stopped, finalizing the logging of the ex-
periment.

3.3 Plots

The plots can be found on the neptune website here.
Figure 5 is an example plot to showcase here in the report.

4 Judging the accuracy of the prediction

We need to scientifically quantify if the prediction result is good enough.

To judge that the model can be successfully used to help the RL agent lock the PRMI, I
plot the distance between corresponding pair values of PRCI and MICH.

This means, that first I take a pair of PRCL and MICH value, then the signal (say S, which
is a 31 elements long array) which is generated by Finesse at that point and find out the
corresponding pair of PRCI and MICh value for which the NN prediction is the closest to
the signal S.

Then I find out the distance between the two pairs of MICH and PRCL. The plot generated
is shown in figure 6.

5 How the real data looks like

It looks quite miserably far from what we have generated because we are currently working
in a 0 noise, 1st order HG mode zone which is highly idealized and our work needs to be
made more realistic by addition of more and more complexity.
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Figure 5: Plot for AS signal demodulated at 2f1 frequency in QQ phase
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Results

. We achieved the duplication of finesse data to a decent level in first order laser mode,

i.e., with maxtem O.

. The RL agent training process was seen to increase by 30 times when the model was

used to train.

Future goals

. We need to increase the maxtem and make the data more realistic

. We need to incorporate the issues which the real-life noise may bring in. This is being

done parallely to make the RL agent robust.

. We might need to add better resolution around the region where we intend to lock the

PRMI so that once locked the lock is sustained by active control using the RL agent

Finally the goal is to shift to DRMI to fully control the 40m IFO, except the arms
where ALS works very nicely.
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