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1 Introduction

Quantum communication is poised to become a fundamental technology for future data
transmission, requiring efficient solutions for long-distance communication on a continen-
tal scale[1]. While optical fiber cables have revolutionized traditional communication, they
present significant photon loss challenges, with absorption rates around 0.1 dB per kilometer[3].
This loss is particularly problematic for quantum communication systems[5], especially those
utilizing continuous-variable quantum communication, where loss is a critical parameter to
manage.

For instance, in optical squeezing, losses cap the maximum achievable squeezing levels. As
detailed in the supplementary materials of [2] by Goodwin-Jones et al., the relationship
between squeezing and loss is given by:

S = S0(1− l) + l, (1)

where S0 represents the initial ratio of squeezing to vacuum variance, S is the ratio after
loss, and l denotes the fractional power loss in the system.

To mitigate these challenges, two primary strategies have been proposed: satellite-based
communication and quantum repeaters. Nicolas Sangouard and colleagues explore a quan-
tum repeater approach using atomic ensembles as quantum memories[7]. Meanwhile, Sumit
Goswami et al. propose a network of low Earth orbit (LEO) satellites with total estimated
losses of less than 30 dB over 20,000 km, equating to approximately 0.001 dB/km. This
system assumes that each satellite, separated by 120 km, maintains other losses below 2%
and employs 60-cm diameter telescopes to minimize diffraction loss[8].

An innovative approach presented by Yuexun et al.[5] involves a vacuum beam guide (VBG).
This method uses an array of lenses to guide light through a vacuum pipe, enabling long-
range quantum communication over thousands of kilometers with a quantum channel ca-
pacity exceeding 1013 qubits/sec. Using this methodology, photon losses can be limited to
approximately 0.0001 dB/km, making it the most efficient method for long-distance quan-
tum communication. Photon losses in the VBG arise from three factors: lens losses, residual
gas absorption, and imperfect alignment, collectively represented as[5]:

αtotal = αlens + αgas + αalign (2)

Lens loss, denoted as αlens, results from absorption, scattering, reflection, and diffraction.
Proper lens radius selection minimizes diffraction loss, and multi-layer anti-reflective coatings
reduce lens losses to less than 0.0001 dB/km at wavelengths around 1550 nm. Gas loss within
the VBG, primarily due to absorption by residual air at 1 Pascal pressure, also remains below
0.0001 dB/km at similar wavelengths. Imperfect alignment in the confocal design contributes
to the effective attenuation rate, expressed as[5]:

αalign ≤ −10
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where σs and σL0 represent transverse and longitudinal displacement fluctuations, respec-
tively, and σf indicates focal length deviation.

Progress has been made toward optimizing the parameters of a lens array to minimize photon
losses. The primary parameters under investigation include the focal length/focal scale, lens
separation (LLens), and the initial beam parameter q. For simplicity, the lens separation (the
distance between any two adjacent lenses) is assumed to be uniform across the entire array.
Additionally, the initial beam parameter is optimized as two distinct parameters: w0 and z0,
representing the beam waist and Rayleigh range, respectively, for the starting point of the
beam.

2 Optimization to get the best parameters

The differential evolution algorithm was employed to achieve the optimal set of parameters.
This algorithm effectively searches for the best parameters to minimize losses. In the initial
findings, we searched for optimal parameters for a lens radius of 12 cm and 14 cm of lens.
A serrated aperture was introduced into the model to further understand the impact of
scattering.

2.1 Differential Evolution Algorithm

The Differential Evolution (DE) algorithm is a powerful stochastic optimization method used
for solving multidimensional continuous optimization problems. It was introduced by Storn
and Price in 1995 and has since been widely applied in various fields due to its simplicity,
efficiency, and robustness [6]. The algorithm operates through a population-based approach,
iteratively improving candidate solutions based on the principles of mutation, crossover, and
selection.

Initialization In the initialization step, a population ofNp candidate solutions, also known
as individuals, is randomly generated. Each individual is a vector in the search space,
typically represented as xi,G for the i-th individual in the G-th generation. The initial
population is created within the defined parameter bounds:

xi,j,0 = xj,min + randj(0, 1) · (xj,max − xj,min)

where xi,j,0 is the j-th parameter of the i-th individual, xj,min and xj,max are the lower and
upper bounds of the j-th parameter, and randj(0, 1) is a uniformly distributed random
number between 0 and 1.

Mutation Mutation is the process of creating a mutant vector vi,G for each target vector
xi,G. This is achieved by adding the weighted difference between two randomly selected
population vectors to a third vector. The most common mutation strategy, often referred to
as DE/rand/1, is defined as:

vi,G = xr1,G + F · (xr2,G − xr3,G)
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where r1, r2, r3 are distinct randomly chosen indices, and F is a scaling factor (typically
0 ≤ F ≤ 2) that controls the amplification of the differential variation.

Crossover Crossover is the process of combining the mutant vector vi,G with the target
vector xi,G to form a trial vector ui,G. The crossover operation helps to introduce diversity
into the population. A commonly used crossover method is binomial (uniform) crossover:

ui,j,G =

{
vi,j,G if randj(0, 1) ≤ CR or j = jrand

xi,j,G otherwise

where ui,j,G is the j-th component of the trial vector, CR is the crossover probability (typ-
ically 0 ≤ CR ≤ 1), and jrand is a randomly chosen index to ensure that at least one
component of the trial vector differs from the target vector.

Selection Selection determines which vector (either the target vector xi,G or the trial
vector ui,G) will survive to the next generation. The trial vector replaces the target vector
if it has a lower loss (or higher fitness, depending on the problem):

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)

xi,G otherwise

where f(·) is the objective function being minimized.

Termination The DE algorithm iterates through the mutation, crossover, and selection
steps until a stopping criterion is met. Common termination criteria include reaching a
maximum number of generations Gmax or achieving a sufficiently low objective function
value.

Advantages and Applications The DE algorithm is renowned for its simplicity, ease
of implementation, and robustness in handling non-linear, non-differentiable, and multi-
modal objective functions. It has been successfully applied in various domains such as
engineering design, machine learning, and financial modeling. For a comprehensive overview
of the Differential Evolution algorithm and its variants, readers are referred to the extensive
literature on the subject [9].

2.2 Results with Differential Evolution

The Differential Evolution (DE) algorithm has provided optimized parameters for lens radii
of 12 cm and 14 cm. It is evident from the table that, to achieve truly optimized parameter
values, the iteration and population size need to be fairly large, specifically 60 and 16 respec-
tively in our case. One notable point from Table 1 is the significantly lower loss observed
with the 14 cm aperture radius.
Additionally, it is important to note that while we were expecting confocal solutions—where
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the lens separation is twice the focal length—the solutions obtained from the optimizer can
be classified as near-confocal. These are not true confocal solutions. Furthermore, Figure 1
shows that the maximum beam size is attained at the lens for the parameters resulting in
minimum losses for a 12 cm radius aperture lens. This highlights the importance of accu-
rately optimizing the beam parameters to achieve minimal loss.
The serrated aperture was introduced to study its effect on scattering and overall system
performance. The optimization results for the serrated aperture are currently under review.

Run # (Lens
radii)

L Lens
(m)

Loss
(ppm)

L
focal
(m)

w0
(mm)

z0 (m) Pop
size

Iters
(max)

Pass

Run 1 (12cm) 2061.44 2524 2432.5 33.7 -141.0 4 4.0 N/A
Run 2 (12cm) 3320.24 1465 2291.0 33.1 515.1 4 4.0 Fail
Run 3 (12cm) 3054.50 1302 1313.4 25.5 248.1 2 2.0 Fail
Run 4 (12cm) 3054.50 1302 1313.4 25.5 248.1 2 2.0 Fail
Run 5 (12cm) 2959.19 1921 3329.1 37.1 549.7 8 10.0 Fail
Run 6 (12cm) 3659.11 1309 2067.4 31.7 375.7 16 20.0 Fail
Run 7 (12cm) 3686.92 1102 1401.0 25.8 -47.7 16 40.0 Fail
Run 8 (12cm) 3750.09 1087 1453.9 26.2 -15.6 16 60.0 Pass
Run 9 (12cm) 3712.04 1088 1423.7 25.9 6.8 16 60.0 Fail
Run 10 (12cm) 3706.92 1087 1421.0 25.8 5.8 16 60.0 Fail
Run 11 (12cm) 3750.64 1086 1441.9 26.1 2.5 16 60.0 Pass
Run 12 (12cm) 3753.38 1087 1447.4 26.1 -12.0 16 60.0 Fail
Run 1 (14cm) 5002.80 796 1914.6 30.0 -12.3 16 60.0 Pass
Run 1* (14cm) 4622.18 883 1786.4 29.1 -10.6 16 60.0 Pass

Table 1: Optimization Results for Lens Array Parameters. The “Run” column indicates the
number of iterations and lens radius used for each optimization attempt. The “Pass” column
reflects the success flag from the SciPy library’s differential evolution optimization process. A
“Pass” value indicates that the algorithm successfully converged to a solution, with minimal
changes in the objective function value between iterations, suggesting an optimal or near-
optimal solution. “Run 1* (14cm)” denotes the use of a serrated aperture, while other runs
use a circular non-serrated aperture.

3 Exploring the Parameter Space

To gain deeper insights into the parameter space, corner plots were generated for the four
primary parameters: focal length, lens separation, w0, and z0. These plots illustrate the
variations in photon loss across different parameter sets, offering a visual representation of
the tolerance levels required for optimal operation in a vacuum beam guide. This analysis
was performed using the Markov-Chain Monte Carlo (MCMC) algorithm with the emcee

library and supporting tools.
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Figure 1: Plot of beam size and Gauy phase along the phase array Run 11 (12cm) in table 1

3.1 Markov-Chain Monte Carlo (MCMC) Algorithm

The Markov-Chain Monte Carlo (MCMC) algorithm is a powerful statistical tool used to
sample from probability distributions by constructing a Markov chain that has the desired
distribution as its equilibrium distribution. MCMC methods are particularly useful for high-
dimensional problems where direct sampling is challenging. The key steps involved in the
MCMC algorithm are as follows:

Initialization In the initialization step, an initial set of parameters θ0 is selected. This
initial state serves as the starting point for the Markov chain. The choice of the initial
parameters can influence the convergence rate, but given sufficient iterations, the impact
diminishes as the chain converges to the target distribution.

Proposal The proposal step involves generating new candidate parameters θ∗ based on
the current state θt of the chain. This is done using a proposal distribution q(θ∗|θt), which
suggests new states to explore. Common choices for the proposal distribution include Gaus-
sian distributions centered at the current state, among others. The proposal step is formally
expressed as:

θ∗ ∼ q(θ∗|θt)

Acceptance The acceptance step decides whether to accept or reject the proposed can-
didate θ∗. This decision is based on the Metropolis-Hastings acceptance criterion, which
ensures that the Markov chain converges to the target distribution π(θ). The acceptance
probability α is given by:

α = min

(
1,

π(θ∗)q(θt|θ∗)
π(θt)q(θ∗|θt)

)
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A uniform random number u ∼ Uniform(0, 1) is drawn, and the new state is accepted if
u ≤ α:

θt+1 =

{
θ∗ if u ≤ α

θt otherwise

Iteration The proposal and acceptance steps are iteratively repeated, allowing the chain to
explore the parameter space. Over time, the distribution of the sampled states θt approaches
the target distribution π(θ).

Burn-in and Convergence In practice, the initial samples from the chain (known as the
burn-in period) are often discarded to ensure that the remaining samples are drawn from
the stationary distribution. The length of the burn-in period depends on the problem and
the initial state. Convergence diagnostics are employed to assess whether the chain has
sufficiently mixed and reached equilibrium.

Applications and Advantages MCMC algorithms are widely used in Bayesian inference,
where the goal is to estimate posterior distributions of parameters given observed data.
They are also applicable in statistical physics, econometrics, and computational biology. The
primary advantage of MCMC is its ability to handle complex, high-dimensional distributions
that are difficult to sample using traditional methods. Detailed explanations and theoretical
foundations of the MCMC algorithm can be found in statistical literature [10, 11].

3.2 Results from MCMC

The corner plots in Figure 2, generated from MCMC for a 12 cm lens radius, provide a
comprehensive view of the parameter space. These plots illustrate how variations in each
parameter affect the total photon losses and help identify the safe tolerance levels for each
parameter to ensure optimal performance.

The corner plots indicate that the parameters w0 and z0 exhibit a narrower range of variation
compared to the focal scale and lens separation. This observation is corroborated by the
corner plot shown in Figure 2. It is crucial to pay special attention to the focal scale and lens
separation when determining the optimal solution. The histograms for these parameters do
not converge to a single point but rather display multiple regions where extremum points are
located. This suggests that there are several subranges within the parameter space where
optimal or near-optimal solutions can be found.

Understanding the distribution of these extremum points is essential for ensuring the ro-
bustness and reliability of the optimized parameters. The variability in the focal scale and
lens separation indicates that multiple configurations can achieve minimal photon losses,
highlighting the importance of thorough parameter space exploration to identify the most
effective solutions. The exploration in this direction is in the process.
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Figure 2: Corner Plot

4 Geophysical Analysis of Vacuum Beam Guide Design

It is imperative to conduct a geophysical study of possible Vacuum Beam Guide (VBG)
designs. This study aims to address the impracticality of constructing a straight-line VBG
over a distance of 4000 km due to the Earth’s curvature. Placing the VBG underground is
essential to shield it from environmental factors such as rain, high-speed winds, and potential
theft in open areas.

Consider placing the VBG in a straight line between two points 4000 km apart on the Earth’s
surface. The following approximate analysis calculates the maximum depth required at the
midpoint:

• Earth’s radius R ≈ 6371 km.

• Arc length s between the two points:

s = Rθ

where θ is the central angle in radians.

• For an arc length of 4000 km:

θ =
s

R
=

4000 km

6371 km
≈ 0.627 radians
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• Chord length d (straight-line distance between the two points):

d = 2R sin

(
θ

2

)

d = 2× 6371× sin

(
0.627

2

)
≈ 3987 km

• Depth h required at the midpoint:

h = R−

√
R2 −

(
d

2

)2

h = 6371−

√
63712 −

(
3987

2

)2

≈ 25.7 km

This approximate analysis illustrates that a straight-line VBG over 4000 km would require
digging approximately 25.7 km deep at the midpoint, which is impractical. Instead, con-
structing the VBG in smaller sections that follow the Earth’s curvature is necessary.

A B

Center of Earth

h
d

Figure 3: Illustration of the impractical depth required for a straight-line Vacuum Beam
Guide (VBG) over 4000 km.
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