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1 Background and Introduction

1.1 Gravitational Waves and General Relativity

Einstein put forward the theory of general relativity (GR) in the early 20th century, part of which theorized
the idea of spacetime, and claimed that spacetime distortions occur where massive objects exist in its fabric.
He summarized his theory mathematically through the Einstein field equations. Building off of this work,
two years later, he posited the existence of gravitational waves (GW) — spatial distortions as transverse
waves that originate from non-spherically symmetric quadrupolar disturbances before traveling away at the
speed of light [2, 9]. Because GR theorizes the existence of GWs, we can use GWs as a method to test GR.
There are several tests of GR, but GWs are the best probe for the theory.

Not all tests of GR were created equal, as summarized by Fig. (1). While all astrophysical objects have
gravitational potential and cause spacetime curvature, the most extreme tests of GR exist in the strong-field
regime. Potential is proportional to M/R3, and curvature is proportional to M/R. The perihelion procession
of Mercury probes GR, but not strenuously, since it has potential between 10~7 and 1078, and curvature
between 10732 and 10733 em~2 [14]. Due to the Schwarzchild radius, the event horizon of a black hole
yields potential approximately 0.5, and is the most extreme possible potential. While Sagittarius A* and
MB87 both have potential near 0.5, their curvature is orders of magnitude lower than GWs’ curvature [7].
Additionally, curvatures between 1074 and 107! cm~2 are the most extreme for realistic astrophysical
signals [7]. Probing GR in this region requires the detection of GWs from black hole and neutron star
mergers. Thus, GW tests probe GR at the most extreme curvatures and potentials, and as such are the best
tests of GR.

The Laser Interferometer Gravitational-wave Observatory (LIGO) — a joint project between the Califor-
nia Institute of Technology, the Massachusetts Institute of Technology, and the National Science Foundation
— was built to detect these GWs and aims to further our understanding of GWs and test GR [1, 5]. LIGO has
perpendicular arms that detect compact binary mergers using the interference of light due to the difference
in length of the arms that GWs cause. This change in length is directly proportional to GW strength [1, 5].
The compact binary mergers, mostly binary black hole mergers, are then analyzed to check for consistency
with GR. LIGO is sensitive to GW frequencies between 10 and 1000 Hz, so black holes of stellar mass are
easiest to detect [10].

1.2 How do we model modifications to GR with individual observations?

There are many different ways of modeling GR deviations by modeling the GW signal. Here we will use one
specific test: inferring deviations from the post-Newtonian (PN) approximation. Post-Newtonian approxima-
tion at the lowest order is the quadrupole formula, which estimates the emitted radiation from quadropolar
mass distribution [13]. The PN expansion for gravitational-wave emission involves the dimensionless pa-
rameter v/c, where v is the orbital velocity of the binary, with the lowest order being the Newtonian-order
v/c order, and higher orders being (v/c)?, (v/c)?, etc [15, 8]. PN tests are run by first constructing a
post-Newtonian description of the GW inspiral in the frequency domain, before making modifications to
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Figure 1: From [14]. This graphic shows a plot of gravitational potential vs. curvature for various tests of
GR. The theoretical limit for the gravitational potential exists between 0.5 and 1.

individual parameters in the phase evolution [12]. This is done with the phase, not the amplitude, because
LIGO is more sensitive to phase deviations than those of amplitudes.
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In this equation, ®(f) is the frequency domain GW phase under the stationary phase approximation f,
the red-shifted chirp-mass multiplied by f (the frequency), divided by ¢3. Additionally, ¢, and ¢. are the
coalescence time and phase respectively, n is the symmetric mass ratio, and ¢y, @i, are PN coefficients for
the k/2 PN order [12]. After running these PN tests, a posterior is obtained by running Bayesian inference,
a statistical framework.

Bayesian inference make statements about the Universe from data by creating a posterior distribution
[16]. Creating this posterior distribution requires a likelihood to describe the measurement (noise, etc.) and
a prior to encode prior beliefs about each event’s parameters 6. Bayesian inference uses Bayes’ Theorem,
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In this equation £(d|#) is the marginalized likelihood and 7 (0) is the prior, and the evidence, which normalizes
the distribution, is denoted as Z [16]. This same formalism is modified for use on multiple events.

Bayes theorem is used to make posterior distributions, which give probable parameters for each event
analyzed, using Eq. (1). Posterior distributions can also be made for a population of events. This analysis of
GWs and individual compact binary mergers introduces inferred deviations in the terms. These constraints
are often in terms of posterior distributions on GR deviations of parametric post-Newtonian terms in a
waveform expression [4].

1.3 How to we test GR with many observations?

Hierarchical inference is a method that first models the individual events from a source, and then the
population of events to give the astrophysical population of the source given the events. The analysis
returns parameter distributions for the population model, which is called the hyper-posterior [6].

In order to do this, events are compared with signal models that output many individual event posteriors,
which are the probable parameters for each event. These posterior distributions from individual events are
taken with a population model described by hyper-parameters, and a hyper-posterior — or an astrophysical
population distribution — is inferred [16]. From this hyper-posterior, the astrophysical population has been
inferred under the assumption of the choice of population model. A population model is important because



otherwise an incorrect astrophysical population may be implicitly assumed, which in turn leads to bias in
supposed measured deviations from GR [12].

To look at the population properties of a collection of events, the prior for each even # is made conditional
on hyper-parameters A, which parameterizes the astrophysical distribution from which the 8s are drawn [16].
These hyper-parameters are very important because they parameterize the shape of the inferred astrophysical
population, and one goal of population inference is estimating the posterior of these hyper-parameters. This
will result in the likelihood of the data given the hyper-parameters, which is determined using Eq. (2).

A population likelihood is necessary for hierarchical inference. The population likelihood is a formula
that allows simultaneous astrophysical population inference and GR testing, decreasing this bias [12, 11].
The equation for population likelihood is

p({d}[A) =
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Here, {d} is the collection of N observations, {(A) accounts for selection biases and is the detectable fraction
of observations given the population hyper-parameters, p(d;|6;) is the likelihood for each individual event,
and m(0;|A) are the hyper-priors for each event [12]. Thus, w(6;|A) is where the population distribution is
encoded.

This equation shows how individual observations are put together for hierarchical inference. As stated
earlier, this hierarchical approach requires a population model, so we therefore must choose one population
model to use. Currently, we are not sure in what manner the different choices of population model impact
GR tests. This leads to my project.
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1.4 Project Proposal

Population distributions depend in part on the choice of population model, thus the choice of population
model must be carefully considered. So far, this approach of joint inference has, at the population level,
yielded GR deviations more consistent with GR by about 0.4, when using a POWERLAW+PEAK population
distribution for the mass of a black hole [12, 3]. However, it is possible that deviation from general relativity
could be absorbed or hidden by an incorrect, assumed astrophysical population, so it is important to study
the impact of different astrophysical population models on inferred GR deviation constraints. It is true that
at some point that the incorrect choice will also lead to biases, the question is when, and how badly. Testing
this using different population models is what I aim to do.

2 Objectives

e Generate simulated catalogs of events drawn from different astrophysical population models

e With injected signals, use both mis-specified and correct population models to determine the implica-
tions of astrophysical population mis-specification, including whether it would be possible to determine
that mis-specification had occurred post hoc

e Determine how including different astrophysical population models influences GW tests of GR, and
through this explore the significance of model choices for future tests

3 Approach

I will work with my mentor to expand on the work in reference [12] to study the impact or bias from mis-
specified population models in testing general relativity. In order to do this I will pick two to three population
models, and generate a simulated set of observations from each. I will then analyze these injected signals
with the PN deviation gravitational waveform model, before inferring each set with each model. With this
information, I will see when and where each population model breaks down. I will also compare the different
population models (mis-specified and not) to each other, and to the work completed in reference [12].

I will simulate catalogs of events using JupyterNotebook, NumPyro, Jax, and Python code with various
population models to constrain post-Newtonian phase coefficient deviations.
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Work Plan

Week 1-2: Get set up with NumPyro and Jax in JupyterNotebook and experimenting with running
population inference calculations.

Week 3: Identify and read up on population models to test; begin coding the population models into
the inference code

Week 4: Figure out how to create a simulated catalog of events to run through code
Weeks 5-6: Run analyses using the targeted population models on the simulated catalog of events

Weeks 7-8: Analyze hyper-posteriors generated by running analyses; compare them to each other;
check for realistic population constraint assumptions

Weeks 9-10: Wrap up any final analysis, create poster and presentation, work on write-up/paper, final
presentation
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