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1 Background

In the early 20th century, Albert Einstein put forward the theory of general relativity (GR), and summarized
his theory mathematically through the Einstein field equations. Part of GR theorized the concept of space-
time, which spatially distorts in the vicinity of massive astrophysical objects. Building off of this work, two
years later Einstein posited the existence of gravitational waves (GW) — spatial distortions as transverse
waves that originate from non-spherically symmetric quadrupolar disturbances before traveling away at the
speed of light [2, 10]. Because GR theorizes the existence of GWs, it is possible to use GWs as a method to
test GR. There are several tests of GR, but GWs are the best probe for the theory.

Different tests of GR interrogate the theory to different levels, as summarized by Fig. 1. While all
astrophysical objects have gravitational potential and cause spacetime curvature — a key insight of GR —
the most extreme tests of GR exist in the strong-field regime. The gravitational potential is proportional to
M/R3, and curvature is proportional to M/R. The perihelion procession of Mercury probes GR, but not
strenuously, since it has potential between 10−7 and 10−8, and curvature between 10−32 and 10−33 cm−2

[18]. Due to the Schwarzschild radius, the event horizon of a black hole yields potential approximately 0.5,
and is the most extreme possible potential. While Sagittarius A* and M87 both have potential near 0.5,
their curvature is orders of magnitude lower than the spacetime curvature near merging stellar mass black
hole binaries [8]. Curvatures between 10−14 and 10−10 cm−2 are the most extreme for realistic astrophysical
signals [8]. Probing GR in this region requires the detection of GWs from black hole and neutron star
mergers. Thus, GW tests probe GR at the most extreme curvatures and potentials, and as such are the best
tests of GR.

The Laser Interferometer Gravitational-wave Observatory (LIGO) — a joint project between the Califor-
nia Institute of Technology, the Massachusetts Institute of Technology, and the National Science Foundation
— was built to detect these GWs and aims to further our understanding of GWs and test GR [1, 5]. LIGO
has perpendicular arms that detect compact binary mergers using the interference of light due to the differ-
ence in length of the arms that a passing GW causes. This change in length is directly proportional to GW
strength [1, 5]. The compact binary mergers, mostly binary black hole mergers, are then analyzed to check
for consistency with GR. LIGO is sensitive to GW frequencies between 20 and 1000 Hz, so black holes of
stellar mass are easiest to detect [12].

2 Introduction to methods for testing GR

2.1 Modeling modifications to GR with individual observations

There are many different ways of modeling GR deviations by modeling the GW signal. One of these tests is
inferring deviations from the post-Newtonian (PN) approximation. The post-Newtonian approximation at
the lowest order is the quadrupole formula, which estimates the emitted radiation from a quadrupolar mass
distribution [17]. The PN expansion for gravitational-wave emission involves the dimensionless parameter
v/c, where v is the orbital velocity of the binary, with the lowest order being the Newtonian-order v/c
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Figure 1: From Ref. [18]. This graphic shows a plot of gravitational potential vs. curvature for various tests
of GR. The theoretical limit for the gravitational potential exists between 0.5 and 1.

order, and higher orders being (v/c)2, (v/c)3, and so on [20, 9]. PN tests are run by first constructing
a post-Newtonian description of the GW inspiral in the frequency domain, before making modifications to
individual parameters in the phase evolution [7, 19]. This is done with the phase, not the amplitude, because
LIGO is more sensitive to phase deviations than those of amplitudes; over the course of an inspiral, phase
shifts accumulate, while amplitude differences do not.
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In this equation, Φ(f) is the frequency domain GW phase under the stationary phase approximation f̃ ,
the red-shifted chirp-mass multiplied by f (the frequency), divided by c3. Additionally, tc and ϕc are the
coalescence time and phase respectively, η is the symmetric mass ratio, and φk, φk,l are PN coefficients
for the k/2 PN order [7, 19]. After running these PN tests, a posterior is obtained by running Bayesian
inference.

Bayesian inference makes statements about the Universe from data by inferring the distribution probable
for parameters of each event analyzed, known as the posterior distribution [23]. Calculating this posterior
distribution requires a likelihood, to describe the measurement, and a prior, to encode prior beliefs about
each event’s parameters θ. Bayesian inference uses Bayes’ Theorem,

p(θ|d) = L(d|θ)π(θ)
Z

(2)

In this equation L(d|θ) is the likelihood and π(θ) is the prior, and the evidence, which normalizes the
distribution, is denoted as Z [23]. This same formalism can be used to study multiple events, with a
modified version of the likelihood function.

2.2 Testing GR with many observations

Hierarchical inference is a method that uses posterior distributions from individual events to model the
overall population of the astrophysical distribution from which the events originated. The analysis returns
a distribution for the hyper-parameters of the population model, which is called the hyper-posterior [6, 23].
In this hyper-posterior, the astrophysical population has been inferred under the assumption of the choice of
population model. A population model is important because otherwise an incorrect astrophysical population
may be implicitly assumed, which in turn leads to bias in supposed measured deviations from GR [16].

To look at the population properties of a collection of events, the prior for the parameters θ is made
conditional on hyper-parameters Λ, which encodes the astrophysical distribution from which the θs are
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drawn [23]. These hyper-parameters are very important because they parameterize the shape of the inferred
astrophysical population, and one goal of population inference is estimating the posterior of these hyper-
parameters. One key piece of estimating the hyper-posterior is the population likelihood, which is calculated
using Eq. 3.

A population likelihood is necessary for hierarchical inference. The population likelihood is a formula
that allows simultaneous astrophysical population inference and GR testing, decreasing this bias [16, 14].
The equation for the population likelihood is

p({d}|Λ) = 1

ξ(Λ)
N

N∏
i=1

∫
dθip(di|θi)π(θi|Λ) (3)

Here, {d} is the collection of N observations, ξ(Λ) accounts for selection biases and is the detectable fraction
of observations given the population hyper-parameters, p(di|θi) is the likelihood for each individual event,
and π(θi|Λ) are the hyper-priors for each event [23]. Thus, π(θi|Λ) is where the population distribution is
encoded.

This equation shows how individual observations are put together for hierarchical inference. As stated
earlier, this hierarchical approach requires a population model, so we therefore must choose one population
model to use. Currently, we are not sure in what manner the different choices of population model impact
GR tests. This leads to my project.

3 Project motivation

Population distributions depend in part on the choice of population model, thus the choice of population
model must be carefully considered. So far, this approach of joint inference has, at the population level,
yielded GR deviations more consistent with GR by about 0.4σ, when using a PowerLaw+Peak population
distribution for the mass of a black hole [16, 3]. However, it is possible that deviation from general relativity
could be absorbed or hidden by an incorrect, assumed astrophysical population, so it is important to study
the impact of different astrophysical population models on inferred GR deviation constraints. It is true that
at some point that the incorrect choice will also lead to biases, the question is when, and how badly. Testing
this using different population models is what I am working on.

4 Current progress

To work on population inference calculations, I began by recreating the analysis in Ref. [13] using a toy model
to ”test” general relativity. This required generating a simulated population of 100 events, each with a mean
and a standard deviation, shown in Fig. 2. Each standard deviation was drawn randomly between 0 and 1,
while the means were each drawn from a Gaussian with a mean of 0 and the associated standard deviation.
In the beginning, I went straight to the likelihood of the population by using an analytical approximation
for the integral of the product of two Gaussian distributions. I ended up with a result consistent with my
original distribution, which implied that my toy model agreed with general relativity, as seen in Fig. 3.

After creating this simple version of the problem, I made the test more consistent with current analyses
of LIGO data by drawing posterior distributions and running the population likelihood from these using
Markov-Chain Monte Carlo sampling methods. From each event I draw 10,000 samples, which made
up the posterior distribution for each event. A histogram of one posterior distribution is shown in Fig. 4.
When I run my injected signals with the population models I choose for black holes, this will be the method I
use. To make the computation easier, I used the natural logarithm of the likelihood instead of the likelihood
— a simplified version of the likelihood is shown in Eq. 4. After some adjustments to correct errors, I ended
up with results consistent with general relativity in my toy model again, as is shown in Fig. 5, where (0,0)
for the mean and standard deviation is present in the plot. One issue is that the minimum effective sample
size is quite small, so I am working on testing whether this is an issue that is biasing my results, and if so
how to fix it.
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Figure 2: This figure shows the Gaussian distributions for each of the 100 events. The Gaussians were
created from the means and standard deviations of each event.

Figure 3: This figure shows the population likelihood over a grid of means and standard deviations, with
means on the x-axis and standard deviations on the y-axis. The point (0,0) is contained in the tail, which
implied consistency with general relativity in this toy model, and thus confirms that my code works.
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Figure 4: This figure shows a histogram of the 10,000 samples drawn from the Gaussian of a single event.
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5 Challenges and Looking Forward

Over the last few weeks, I have been: getting set up with NumPyro and Jax in JupyterNotebook, writing
code to run hierarchical population inference calculations, reading literature to identify population models
to use in my analysis, and actually visiting LIGO Hanford, which was an amazing experience.

The first challenges that I encountered were primarily computer challenges; getting setup with the ap-
propriate software, accounts, permissions, and more. Luckily, those challenges have been resolved, and I
anticipate that going forward I will only experience minor technical difficulties that I will be able to work
through easily.

My second main challenge was creating runnable code. The population likelihood includes a product of
an integral of the product of two Gaussians; this is computationally taxing, so my mentor steered me in the
correct direction for an analytical solution for this integral.

Once I had that up and running, it involved three nested for loops, which requires a lot of computing
power and is quite inefficient. Thus, I had to rewrite my code using meshgrid from NumPy, and move to a
map function. This cut runtime down drastically. After solving this challenge, another change to improve
on efficiency was moving to a Markov-Chain Monte Carlo simulation with posterior distributions.

Outside of my coding work, I have been reading up on population models and brainstorming which to
include in my future simulations. My mentor and I have discussed having one population model that is
obviously misspecified, probably a simple PowerLaw. The first three observing runs of LIGO have found
that black hole mass does not follow this model, and has substructure and other features [3]. Thus I am
currently considering population models such as PowerLaw+Peak, and possibly Broken PowerLaw to
more accurately capture the complex structure [22].

Choosing population models has been a challenge. Because there have not been a high number of
observations so far, it is difficult to determine the distribution of black hole masses, spins, etc. Therefore,
my quest to find a ”most accurate” population model is difficult. For example, with two of the models for
spin, Default and Gaussian, both agree with each other within the margin of error [4, 24, 15]. I plan
to use the Default model for spin, and Power-law Evolution model for redshift, along with my three
mass population models [11, 21].
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Figure 5: This figure shows the distribution of means and standard deviations for the population, as well as
the effective sample size. The blue line shows where a mean of 0 is represented. For consistency with GR,
the point (0,0) needs to be inside the distribution, and it is. The graph of neff shows the effective sample
size. Each of the 100 events had 10,000 samples drawn to create the posterior, therefore an effective sample
size below 32 represents an extremely small percentage of the samples. I am working on investigating this
issue right now.
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