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why we test GR with GWs

Einstein’s theory of
general relativity (GR)

Gravitational waves
(GWSs) as a
consequence

Can use GWs to test
GR — the best test
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Testing GR (TGR) with individual events

Post-Newtonian tests

Lowest order: quadrupole
formula

1. convert GW inspiral data
into frequency domain

2. create PN description of
inspiral

3. make modifications to PN
phase evolution parameters

Bayes’' Theorem

Learn about Universe from
data by inferring the
distribution probable for
parameters of events

cmulyzed likelihood prior
posterior
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Hierarchically testing GR

Hierarchical (inferring the
population parameters from
individual events) TGR relies
on inference of the
astrophysical population o for each
hyper-parameters 'nd'V'dUOI event

populatlon likelihood ’ N eveny
) = 1l / B0l 18701
collection of N / =1

observations detection froctlon

prior for each




GR deviation
model

Gaussian model for
GR deviations =
(mean, SD) = (0,0)
implies consistency
with GR

GR is TRUE

GR is FALSE
O=+0

0 # 0



Primary mass population models

POWER LAW and

POWER LAW + PEAK POWER LAW| | POWER LAW
. ) + PEAK

Inject a certain model —E\H

Recover with a certain < *

model

Some models can be m, m,

described by other models Gaussian peak
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wWhy is this
important?

Incorrect astrophysical
population model = biases in
supposed deviations from GR

Assuming no astrophysical
population model is an
incorrect population model

Can implicitly assume an
astrophysically impossible
population model
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| injected... -
POWER LAW, POWER LAW + g
PEAK 5

S
Alpha = 2 :*g_z
Beta=0 g
Mu=0 e
Sigma =0, 0.25, 0.5 Primary mass (solar masses)

N =100 events

for only POWER LAW + PEAK: GWHFish to simulate posteriors from
Peak_frac = 0.1 3rd generation GW detectors
Peak_mu = 35 Deviation parameter correlated to
Peak_sigma =7 mass
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Injected:
POWER LAW
Recovered:
POWER LAW

GR is injected to
be False with a
sigma of 0.5
GRis
FALSE
O =0

op #£ 0
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Injected:
POWER LAW +
PEAK
Recovered:
POWER LAW

GR is injected to
be False with a
sigma of 0.25

GR is FALSE
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Injected:
POWER LAW +
PEAK
Recovered:
POWER LAW

GR is injected to
be False with a
sigma of 0.5

GR is FALSE
o%0

op #*= 0
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Implications

Using a misspecified
astrophysical population
model leads to inaccurate
recoveries of GR deviations

= it could be plausible that
inconsistencies with GR are
masked by using a
misspecified astrophysical
population model
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Conclusion

Hierarchical TGR (Gaussian model of GR deviations) relies on an
astrophysical population model

Generated simulated catalog of 100 events using POWER LAW
and POWER LAW + PEAK models, sampled with GWFish

Correlated primary mass and GR deviation parameter to
simulate PN deviation test

Markov chain Monte Carlo to recover GR deviation parameters
using each model
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Important conclusions

Using a misspecified
astrophysical population
model leads to inaccurate
recoveries of GR deviations

It is possible that
inconsistencies with GR are
masked by using a misspecified
astrophysical population model
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POWER LAW population

POWER LAW + PEAK population
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