The impact of astrophysical population model choices on post-Newtonian deviation tests of general relativity Ruby Knudsen, UC Berkeley Mentor: Ethan Payne ## Why we test GR with GWs Einstein's theory of general relativity (GR) Gravitational waves (GWs) as a consequence Can use GWs to test $GR \rightarrow$ the best test From Psaltis et al. (2021) ## Testing GR (TGR) with individual events ### **Post-Newtonian tests** Lowest order: quadrupole formula - 1. convert GW inspiral data into frequency domain - 2. create PN description of inspiral - 3. make modifications to PN phase evolution parameters ## **Bayes' Theorem** Learn about Universe from data by inferring the distribution probable for parameters of events analyzed likelihood prior nalyzed likelihood prior posterior $$p(\theta|d) = \frac{p(d|\theta)\pi(\theta)}{\mathcal{Z}} \text{ evidence}$$ ## Hierarchically testing GR detection fraction Hierarchical (inferring the population parameters from individual events) TGR relies on inference of the astrophysical population observations hyper-parameters population likelihood $p(\{d\}|\Lambda) = \frac{1}{\xi(\Lambda)^N} \prod_{i=1}^{N} \int d\theta_i p(d_i|\theta_i) \pi(\theta_i|\Lambda)$ collection of N likelihood for each Gaussian model for GR deviations ⇒ (mean, SD) = (0,0) implies consistency with GR ## Primary mass population models POWER LAW and POWER LAW + PEAK Inject a certain model Recover with a certain model Some models can be described by other models Gaussian peak Incorrect astrophysical population model ⇒ <u>biases in</u> <u>supposed deviations from GR</u> # Why is this important? Assuming no astrophysical population model is an incorrect population model Can implicitly assume an astrophysically impossible population model ## I injected... # POWER LAW, POWER LAW + PEAK Alpha = 2 Beta = 0 Mu = 0 Sigma = 0, 0.25, 0.5 for only POWER LAW + PEAK: $Peak_frac = 0.1$ $Peak_mu = 35$ $Peak_sigma = 7$ N = 100 events GWFish to simulate posteriors from 3rd generation GW detectors Deviation parameter correlated to mass # Injected: POWER LAW Recovered: POWER LAW GR is injected to be **True** GR is TRUE Injected: POWER LAW Recovered: POWER LAW GR is injected to be **False** with a sigma of **0.5** GR is FALSE $\sigma \neq 0$ $\delta \varphi \neq 0$ 10 #### Injected: POWER LAW + PEAK Recovered: **POWER LAW** POWER LAW + PEAK GR is injected to be **True** Injected: POWER LAW + PEAK Recovered: **POWER LAW** POWER LAW + PEAK GR is injected to be **False** with a sigma of **0.25** GR is **FALSE** $\sigma^{\neq 0}$ Injected: POWER LAW + PEAK Recovered: **POWER LAW** POWER LAW + PEAK GR is injected to be **False** with a sigma of **0.5** GR is **FALSE** $\sigma^{\neq 0}$ $\delta\varphi \neq 0$ Using a misspecified astrophysical population model leads to inaccurate recoveries of GR deviations ⇒ it could be plausible that inconsistencies with GR are masked by using a misspecified astrophysical population model ## Conclusion Hierarchical TGR (Gaussian model of GR deviations) relies on an astrophysical population model Generated simulated catalog of 100 events using POWER LAW and POWER LAW + PEAK models, sampled with GWFish Correlated primary mass and GR deviation parameter to simulate PN deviation test Markov chain Monte Carlo to recover GR deviation parameters using each model # Acknowledgements This work was supported by the National Science Foundation Research Experience for Undergraduates (NSF REU) program, the LIGO Laboratory Summer Undergraduate Research Fellowship program (NSF LIGO), and the California Institute of Technology Student-Faculty Programs. I would like to thank my mentor, Ethan Payne, my fellow LIGO SURF-ers, my family and friends, and all of the faculty and mentors at the LIGO SURF program, especially Alan Weinstein and Jonah Kanner. CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u> ## Important conclusions Using a misspecified astrophysical population model leads to inaccurate recoveries of GR deviations It is possible that inconsistencies with GR are masked by using a misspecified astrophysical population model #### References - Junaid Aasi, BP Abbott, Richard Abbott, Thomas Abbott, MR Abernathy, Kendall Ackley, Carl Adams, Thomas Adams, Paolo Addesso, RX Adhikari, et al. Advanced ligo. Classical and quantum gravity, 32(7):074001, 2015. - [2] Benjamin P Abbott, Richard Abbott, TDe Abbott, MR Abernathy, Fausto Acernese, Kendall Ackley, Carl Adams, Thomas Adams, Paolo Addesso, Rana X Adhikari, et al. Observation of gravitational waves from a binary black hole merger. *Physical review letters*, 116(6):061102, 2016. - [3] R Abbott, TD Abbott, F Acernese, K Ackley, C Adams, N Adhikari, RX Adhikari, VB Adya, C Affeldt, D Agarwal, et al. Population of merging compact binaries inferred using gravitational waves through gwtc-3. Physical Review X, 13(1):011048, 2023. - [4] Rich Abbott, TD Abbott, S Abraham, Fausto Acernese, K Ackley, A Adams, C Adams, RX Adhikari, VB Adya, Christoph Affeldt, et al. Population properties of compact objects from the second ligo-virgo gravitational-wave transient catalog. *The Astrophysical journal letters*, 913(1):L7, 2021. - [5] Fet al Acernese, M Agathos, K Agatsuma, Damiano Aisa, N Allemandou, Aea Allocca, J Amarni, Pia Astone, G Balestri, G Ballardin, et al. Advanced virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 32(2):024001, 2014. - [6] Matthew R Adams, Neil J Cornish, and Tyson B Littenberg. Astrophysical model selection in gravitational wave astronomy. *Physical Review D*, 86(12):124032, 2012. - [7] KG Arun, Bala R Iyer, Bangalore Suryanarayana Sathyaprakash, and Pranesh A Sundararajan. Parameter estimation of inspiralling compact binaries using 3.5 post-newtonian gravitational wave phasing: The nonspinning case. Physical Review D—Particles, Fields, Gravitation, and Cosmology, 71(8):084008, 2005. - [8] Tessa Baker, Dimitrios Psaltis, and Constantinos Skordis. Linking tests of gravity on all scales: from the strong-field regime to cosmology. *The Astrophysical Journal*, 802(1):63, 2015. - [9] Luc Blanchet and Thibault Damour. Post-newtonian generation of gravitational waves. In *Annales de l'IHP Physique théorique*, volume 50, pages 377–408, 1989. - [10] Albert Einstein and Emil Warburg. Die Relativitätstheorie. Springer, 1911. - [11] Maya Fishbach, Daniel E Holz, and Will M Farr. Does the black hole merger rate evolve with redshift? The Astrophysical Journal Letters, 863(2):L41, 2018. - [12] Davide Gerosa, Geraint Pratten, and Alberto Vecchio. Gravitational-wave selection effects using neural-network classifiers. Physical Review D, 102(10):103020, 2020. - [13] Maximiliano Isi, Katerina Chatziioannou, and Will M Farr. Hierarchical test of general relativity with gravitational waves. Physical Review Letters, 123(12):121101, 2019. - [14] Ryan Magee, Maximiliano Isi, Ethan Payne, Katerina Chatziioannou, Will M. Farr, Geraint Pratten, and Salvatore Vitale. Impact of selection biases on tests of general relativity with gravitational-wave inspirals. Phys. Rev. D, 109(2):023014, 2024. - [15] Simona Miller, Thomas A Callister, and Will M Farr. The low effective spin of binary black holes and implications for individual gravitational-wave events. *The Astrophysical Journal*, 895(2):128, 2020. - **** - [16] Ethan Payne, Maximiliano Isi, Katerina Chatziioannou, and Will M. Farr. Fortifying gravitational-wave tests of general relativity against astrophysical assumptions. Phys. Rev. D, 108(12):124060, 2023. - [17] William H Press and Kip S Thorne. Gravitational-wave astronomy. Annual Review of Astronomy and Astrophysics, 10(1):335–374, 1972. - [18] Dimitrios Psaltis, Colm Talbot, Ethan Payne, and Ilya Mandel. Probing the black hole metric: Black hole shadows and binary black-hole inspirals. *Physical Review D*, 103(10):104036, 2021. - [19] Bangalore Suryanarayana Sathyaprakash and SV Dhurandhar. Choice of filters for the detection of gravitational waves from coalescing binaries. *Physical Review D*, 44(12):3819, 1991. - [20] Hideyuki Tagoshi, Masaru Shibata, Takahiro Tanaka, and Misao Sasaki. Post-newtonian expansion of gravitational waves from a particle in circular orbit around a rotating black hole: Up to o (v 8) beyond the quadrupole formula. *Physical Review D*, 54(2):1439, 1996. - [21] Colm Talbot and Eric Thrane. Determining the population properties of spinning black holes. Physical Review D, 96(2):023012, 2017. - [22] Colm Talbot and Eric Thrane. Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization. The Astrophysical Journal, 856(2):173, 2018. - [23] Eric Thrane and Colm Talbot. An introduction to bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publications of the Astronomical Society of Australia, 36:e010, 2019. - [24] Daniel Wysocki, Jacob Lange, and Richard O'Shaughnessy. Reconstructing phenomenological distributions of compact binaries via gravitational wave observations. *Physical Review D*, 100(4):043012, 2019. #### POWER LAW population #### POWER LAW + PEAK population 21 GR is injected to be **True** N = 250 POWER LAW **Recovered:** POWER LAW **POWER** LAW + PEAK GR is injected to be **True** N = 500 23 GR is injected to be **True** N = 500 24