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In population analyses of gravitational waves emitted from binary black holes (BBH), spin mag-
nitude, polar angle, and azimuthal angle distributions provide critical insights regarding BBH evo-
lutionary histories and formation channels, yet studies have presented conflicting conclusions about
the nature of these distributions. For this reason, developing reliable models of BBH spin compo-
nent distributions continues to be an essential problem. However, the effects of spin magnitude and
directions on gravitational wave signals are subdominant compared to the influence of the effective
aligned spin and the effective precessing spin parameters. The resulting degeneracy of spin compo-
nents poses challenges for constraining models of their astrophysical distributions and determining
model accuracy. Posterior predictive checks, a widely used model-checking method in gravitational
wave science, especially fall short when applied to models based on data with high uncertainties.
In this project, we implement two alternative methods for predictive checking: partial posterior
predictive checks and split predictive checks. We aim to explore the efficacy of these methods by
applying them to models of varying accuracy of simulated astrophysical populations with the same
effective-spin distribution and different spin component distributions.

I. INTRODUCTION

The continued success of gravitational wave observa-
tion has permitted population analyses of binary black
hole (BBH) mergers [1–3]. Such events can be described
by the spin components of the primary and the secondary,
entailing each of their spin magnitudes (χi), azimuthal
angles (ϕi), and polar angles (θi) [4]. Spin magnitudes
provide a probe into the angular momentum processes
within stellar cores, and large magnitudes can indicate
hierarchical black hole formation through previous merg-
ers. Previous studies have favored small but non-zero
spins, as well as a wide range of polar angles; conflicting
work has favored a majority of spin zero black holes and
remaining nonzero spins that are primarily aligned with
orbital angular momentum [5].

These opposing conclusions have significant implica-
tions for the prevalence of different BBH formation chan-
nels. The isolated binary formation channel consists of
binary star systems in which one star becomes a black
hole, resulting in mass transfer and an eventual merger
in an observable amount of time. These systems tend
to exist for long periods of time, which is conducive to
a majority of spins that are aligned with orbital angu-
lar momentum. Conversely, dynamic formation occurs
in dense environments where black holes of similar mass
congregate and become gravitationally bound into binary
systems. Such dynamically formed systems lack tidal ef-
fects and mass transfer, thus favoring a random distribu-
tion of spin alignment [6]. Hierarchical mergers—which
often occur in galactic nuclei, active galactic nuclei, and
extremely low-mass ultrafaint dwarf galaxies—may in-
crease BBH eccentricities and quicken inspiral, increas-
ing the likelihood of a merger within Hubble time and
further complicating the picture of BBH formation [6].

Although highly significant, the parameters χi, ϕi, and
θi induce subdominant effects on gravitational wave sig-
nals, which are instead primarily influenced by the effec-
tive aligned spin (χeff), containing the spin components

that are aligned with the orbital angular momentum, and
effective precessing parameter (χp), encompassing the
anti-aligned components. The lower dimensionality of in-
formative parameters makes it difficult to ascertain the
underlying distributions of spin components. Attempt-
ing to assess the accuracy of population models for these
subdominant parameters poses further challenges.
Posterior predictive checks (PPCs) [7], a common test

of model accuracy, evaluate the performance of predictive
models by checking the consistency between data pre-
dicted by the model and current observations. Although
widely used in gravitational wave population analyses,
PPCs demonstrate significant limitations [8].

II. OBJECTIVES

The objective of this project is to determine whether
partial predictive checks and/or split predictive checks
are more discerning tools for model criticism than PPCs.
Our approach is described further in Section III.

III. APPROACH

To ascertain the efficacy of these methods, we ob-
tain different spin component distributions from a simu-
lated astrophysical population of binary black hole sys-
tems with identical χeff distributions. We attempt to
recover the known component distributions using pre-
dictive models of varying accuracy and then determine
whether partial predictive checks and split predictive
checks properly reflect the performance of the models.

A. Spin Parameterization

The effective aligned spin is defined as
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χeff =
χ1 cos θ1 + qχ2 cos θ2

1 + q
, (1)

and the effective precessing parameter as

χp = max
[
χ1 sin θ1 ,

(
3 + 4q

4 + 3q

)
qχ2 sin θ2

]
, (2)

where q = m2

m1
, χ1 and χ2 are the dimensionless com-

ponent spins, and θ1 and θ2 are the angles between the
component spins and the orbital angular momentum.

B. Posterior Predictive Checks

In posterior predictive checking, the distribution for
a chosen diagnostic statistic is assumed under the null
model f(x|P). The likelihood of this diagnostic statistic,
along with the prior for the parameters (P), is used to
integrate out the parameters from its posterior,

mpost(t|xobs) =

∫
f(t|P)π(P|xobs)dP, (3)

resulting in the distribution mpost for the diagnostic
statistic under the null model. Then, the p-value can
be calculated according to

p = Prmpost(t|xobs)(t(x) ≥ t(xobs)). (4)

By this definition, smaller p-values signify greater conflict
between the model and the observed data.

PPCs fall short if the observed data has high uncertain-
ties. In this scenario, sampling the proposed posterior of
a poor model with the draws weighted according to high
uncertainties will produce a nearly identical population
to the observed data, making posterior predictive check-
ing unhelpful when dealing with uninformative data.

During the summer, we plan to address these issues
by implementing two alternatives to posterior predictive
checks: partial posterior predictive checks [7] and split
predictive checks [9].

C. Partial Posterior Predictive Checks

Training the improper prior into a distribution that
integrates to 1 and evaluating measures of surprise with
the same data can lead to a non-representative p-value.
Partial PPCs address this shortcoming of posterior pre-
dictive checking by avoiding the double-use of data. The
partial PPC method does use the statistic data tobs to
compute measures of surprise, but only uses information
not present in tobs when training the prior. The condi-
tional distribution f(xobs|tobs,P) is used as the likelihood

to determine the posterior distribution πppp of parame-
ters P,

πppp(P|xobs\tobs) ∝ f(xobs|tobs,P)π(P) (5)

∝ f(xobs|P)π(P)

f(tobs|P)
, (6)

which is then used as a prior to determine posterior of
t. With the contribution of tobs already eliminated, P is
integrated out of the posterior:

mppp(t|xobs\tobs) =
∫

f(t|P)π(P|xobs\tobs)dP (7)

The new p-value then takes the form

p = Prmppp(t|xobs\tobs)(t(x) ≥ t(xobs)). (8)

The use of f(xobs|tobs,P) to define the likelihood in-
stead of f(xobs|P) evades the double-use of data that
occurs in PPCs when training the prior into a proper
distribution and then evaluating the p-value [10, 11].

D. Split Predictive Checks

The split predictive check (SPC) similarly aims to
avoid repeated use of data. Rather than conditioning the
prior for P on the influence of tobs (as in partial PPCs),
however, split predictive checks partition the data into
two disjoint subsets from the start. With a single split
of data xobs = xa+xb, the method uses different subsets
when training the posterior and when determining the
p-value. The posterior distribution for x under the null
model

mSPC(xpred|xa) =

∫
f(xpred|P)π(P|xa)dP (9)

integrates out the parameters and is used to define a new
p-value

p = PrmSPC(xpred|xa)(t(xb) ≥ t(xpred)). (10)

The divided split predictive check (divided SPC) ex-
tends this method. Data is divided into N equal subsets,
and the single SPC p-value is calculated for each indi-
vidual subset. The divided SPC p-value is defined as the
p-value obtained by performing the Kolmogorov–Smirnov
test for uniformity on the collection of single SPC p-
values [12].
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IV. TIMELINE

• Weeks 1-2: Attend gravitational wave workshops.
Register an account for the cluster, download the
data, and set up a Github. Begin to replicate Fig-
ure 4 from Miller et al. [8] to gain familiarity with
the posterior sampling.

• Week 3: Finish reproducing Figure 4 from Miller
et al. [8].

• Week 4: Design and write the Python algorithms

for the alternative posterior predictive checks.

• Weeks 5-6: Implement the code for partial pre-
dictive posterior checking on the simulated binary
black hole component distributions.

• Weeks 7-8: Implement the code for the split pre-
dictive posterior checking on the simulated binary
black hole component distributions.

• Weeks 9-10: Finish remaining aspects of the imple-
mentation and apply the algorithms to real data.
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