
SURF Second Interim Project Report
Examining Change Points in LIGO Hanford Data over
Observing Run 4 to Improve Detector Performance

Iain Morton1, Dr. Ansel Neunzert2, and Camilla Compton2

1Department of Physics, Seton Hall University
2LIGO Hanford Observatory

August 3, 2024

DCC: T2400227
California Institute of Technology

LIGO Hanford Observatory
National Science Foundation

1

Contents

1 Narrow Spectral Artifacts 3
1.1 Background and Motivation . 3
1.2 Ongoing Progress . 4
1.3 Challenges and Potential Solutions 5

2 Lockloss Tagging and Plugin Development 6
2.1 Background and Motivation . 6
2.2 Ongoing Progress . 6
2.3 Challenges and Potential Solutions 7

2

1 Narrow Spectral Artifacts

1.1 Background and Motivation

Previously, we have provided a formal definition of the usage and motiva-
tion of the cost-function and discrepancy to analyze change-point methods in
incoming noise. As defined previously, my project’s aim is to utilize python to
detect change points in detected LIGO noise. This is motivated to determine
the behavior and persistence of particular combs over the duration of several
dates over the O4a run.

Identical methods for using cost-functions in the form of the sum of least
square has remained identical. However, an additional discrepancy has since
been changed for simpler plotting and data detection. Our purpose was to keep
the window-sliding technique introduced in the change-point detection methods
for signal processing, but the discrepancy curve was then changed to be plotted
between 0 and 1, which allows for an easier threshold to be established to the
discrepancy data. As such, our initial discrepancy plot was depicted as:

D(ya,t, yt,b) = c(ya,b)− c(ya,t)− c(yt,b) (1)

However, this discrepancy function, when applied over a comb, outputted
various line heights over certain frequencies, which became difficult for an ap-
propriate threshold to be established. Hence, the discrepancy function has been
modified to:

D(ya,t, yt,b) = 1− (c(ya,t) + c(yt,b))

c(ya,b)
(2)

Which made the development of a threshold possible for each frequency.

Furthermore, previous methods of incorporating a provided penalty function
to a criterion function (see Interim Report 1) has been considered for the purpose
of isolating segmentations of said change-points. The penalty function has been
defined as:

Penl0(τ) := β|τ | (3)

However, the smoothing parameter (β) in (3) is assumed with an established
data model and a known variance. Given how the analyzed combs do not
have a previously determined variance amongst change-points, it was necessary
to disregard establishing the penalty function to the criterion, and consider
alternative methods.

3

One such alternative method is to establish a discrepancy curve (defined
above) for plotting, in which the peak prominence package from SciPy may
isolate and distinguish between slope-points and peak-points in the discrepancy
array for each comb range. Following this, a threshold may be introduced to
then distinguish the exact moments of said change-points from the line-height
graphs. This will then be able to be compared to the respective dates on which
said change points occur.

1.2 Ongoing Progress

Following the failure of properly implementing the smoothing parameter to
the penalty function, this hence rendered the method of the criterion function
inefficient for our particular purposes. As such, the immediate next steps were
choosing a particular comb range for O4a line heights. The past chosen fre-
quencies were 24.4 hertz and 24.5 hertz, respectively. This has since changed to
6.977 hertz, with frequency combs varying with the following equation:

fn = f0 + n ∗ δf (4)

Where fn refers to the tooth frequency, f0 is the offset (from 0 hertz), n is an
integer, and δf is the a spacing. The 6.977 hertz frequency was implemented
with n = 26, and then stored in an array for each n multiplication of 6.977
hertz.

This was then plotted, with the line height of each frequency over each date in
O4a depicted in the below figure. Visual change points are immediately notice-
able around November 2023, which was noted and compared to the subsequent
graphs. As accomplished before for the 24.4 and 24.5 hertz frequencies, the line
height for each integer multiple of the 6.977 hertz frequency was then inputted
into an implemented cost function in python, and was then stored into a new
array.

The discrepancy curve was then calculated from the cost functions of the
comb range, and then plotted with an established window size. The labeled
plot below depicts this calculation. It is important to note the change points
in the discrepancy curve visually align with the change points in the line height
graph. Both are plotted over the same dates as well.

From the discrepancy curve, ongoing methods are to attempt to establish a
new arranged array with the peak prominence, and then establish a threshold for
the prominence array. Doing so would isolate the change points of the original
line heights of the combs.

4

Figure 1: Line Height vs. Dates for
6.977 Hertz Comb

Figure 2: Discrepancy for 6.977
Hertz Comb

Figure 3: Number of Change Points
over Respective Dates

1.3 Challenges and Potential Solutions

One of the underlying challenges of the alternative method is the development
of a proper threshold after the arrangement of peak prominence. Determining
this threshold must be based nearly entirely on visual interpretation of the
change points in the shown line height curve. As such, this manual input may
prove to be problematic due to inaccurate visual approximations.

Another potential challenge may be incorporated already automated tech-
niques to unknown combs and lines over the O4 run duration. The tested
computation has been sampled specifically on combs with an already known
number of change points. As such, this may lead to uncertain data analysis.

5

2 Lockloss Tagging and Plugin Development

2.1 Background and Motivation

Lockloss occurs when the suspended mirrors deviate heavily from their nom-
inal, causing them to lose control and disrupting data analysis. Lockloss events
themselves are monitored via the Locklost tool plugins, which determine cor-
relating factors to surrounding phenomena which could explain the reason for
losing lock. For example, seismic activity may impact mirror deviation.

One phenomena occurring prior to lockloss are glitches. Glitches may be
defined as an unknown oscillation in the channel monitoring the output to the
lowest suspended mass of the ETMX suspension. There is not an apparent cause
for such glitches, and they do not appear to correlate to any any other correlating
tag. As such, the establishment of a detection window for these glitches of 1
second to 100 milliseconds prior to the lockloss event was necessary.

Furthermore, because a variety of channels may detect a lockloss at differing
times from each other, it was also necessary to develop a plugin which would tag
for the input mode cleener (IMC) losing lock at either the same time as other
main channels, or 50 milliseconds after. Another instance of channel refinement
may also be to establish saturation thresholds for any ASC channels.

2.2 Ongoing Progress

As established in interim report 1, there were complicating factors in the
development of an appropriate window-range for the glitch detection. As such,
there was a refinement of this window. With strict monitoring from the 1 second
to 100 millisecond range prior to lockloss, the threshold was then implemented
to check for glitches both above and below the zero-axis. As such, this will not
only determine a window prior to lockloss, but furthermore introduce a detection
of said glitch with an appropriate threshold. This was promptly incorporated
within a refinement plugin of the Locklost tool.

Following this, an additional measure was needed to check whether certain
IMC channels detect a lockloss at the same time as the IFO. In order to deter-
mine this particular change, code was developed to compare the refined GPS
times of both events, and tag the IMC with a ”SAME” tag if it loses lock at
the same detected GPS time of the main IFO, or within 50 milliseconds. This
was then promptly tested on all of O4, which led to no detection. However,
the tag was triggered over the O3 run, which indicates the tag works correctly.
This also indicates the channels lose lock at separate times, especially over the
entirety of O4.

6

The next step was monitoring the entirety of tag counts over the O4 run,
including glitch detection and ”SAME”. This was included in a summary plot,
shown below. Furthermore, their counts over the O4 run were also recorded and
plotted in a histogram, shown in the figure below.

Figure 4: Glitch Detection for event 1403958880 Figure 5: Cumulative Tags over O4 run

Figure 6: Total Lockloss Tags over O4

2.3 Challenges and Potential Solutions

The development of both an appropriate window and threshold was the
biggest challenge for ETM glitch detection. After the development of the stan-
dard deviation route, there are still certain cases for the glitch tag to appear
when there are no prevalent glitches. In such cases, the threshold is detecting
the lockloss event itself. As such, further refinement of the glitch detection
method is required, which may require an additional plugin.

7

Additional investigation into the consistency of the ”SAME” tag for IMC
channels may be required, due to the lack of detection in the O4 runs. While
this may not necessarily be a consistent challenge, the tagging of only particular
lockloss events is a next development into analyzing the conditions of these
lockloss events.

8

