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ABSTRACT5

The precession of Binary Black Holes (BBHs) is dependent on the alignment of the orbital angular6

momentum and total spin; precession becomes stronger with higher misalignment of the total spin7

and orbital angular momentum. Weakly precessing systems are likely to have formed through binary8

stellar evolution, while strongly precessing systems may have been formed dynamically. Despite the9

growing number of LIGO sources, evidence of precession is strongly debated in the literature. The10

parameter χp is currently used to evaluate the precession of observed BBH systems. However, χp is11

difficult to constrain to a narrow range of values for most events, and furthermore under commonly12

used priors its probability density vanishes at the aligned-spin configuration χp = 0. We present an13

alternative spin precession parameter, the cosine of the angle between the total spin and the orbital14

angular momentum cos θLS, that provides better localization of a precession value and allows a non-zero15

probability of aligned spins. We begin by testing cos θLS, χp, and other parameters against synthetic16

data with known values to determine the best statistical measurement of precession. We then use17

cos θLS to evaluate the precession in events from O3.18

1. MOTIVATION19

The properties of binary black hole (BBH) mergers20

observed from LIGO-Virgo-KAGRA detections can be21

informative of the formation channel of the system (e.g.,22

Mandel & Farmer 2022). Two primary theories of the23

origin of BBHs exist. The first is that the systems were24

formed through stellar evolutionary channels. Namely,25

as a binary system between two intermediately massive26

stars evolved, both stars remained in orbit, with the re-27

sulting black holes (BHs) surviving the supernovae at28

the end of the stars’ lives. Eventually, due to the emis-29

sion of gravitational waves (GWs), the two coalesced30

into a single BH through a BH-BH merger.31

Alternatively, the BBH system may have been formed32

dynamically. Through the gravitational interactions33

of stars and black holes in dense stellar environments34

such as globular clusters and galactic nuclei, scattering35

events can place two, previously unrelated BHs into or-36

bit around each other. This would most likely be from a37

three-body interaction in which an intruding BH kicks a38

less massive companion from a the binary the other BH39

is in, yielding a BBH system.40

One way to potentially differentiate between these two41

formation channels is through analyzing the precession42

of the orbit. The BHs in BBH systems that formed from43

binary stellar evolution likely have spins S⃗ that are ap-44

proximately aligned with the orbital angular momentum45

L⃗. This stems from the preferential alignment of stel-46

lar rotation axes with the L⃗ of the binary, initialized by47

the angular momentum in stellar nurseries. Additional48

complications such as kicks from the supernovae of com-49

panion stars in the binary may misalign spins. However,50

the details of these processes are still not well modeled,51

so approximations to the effects must be taken into ac-52

count. The simplest of approximations neglect these53

kicks, claiming that S⃗ and L⃗ remain aligned through54

the entire binary evolution process through the BBH55

merger.56

Conversely, dynamically formed BBH systems are57

much more likely to have isotropic spin distributions.58

Because there is no initial relationship between S⃗ and59

L⃗, any orientation of the alignment of S⃗ and L⃗ is equally60

likely. This assumption leads to the prediction that the61

orbits of dynamically formed BBH systems are more62

likely to precess than the orbits of binary stellar evo-63

lution remnants.64

By understanding the precession of a BBH system, in-65

formation regarding the formation channel of the binary66

can be gleaned. In particular, analyzing the precession67

found in LIGO-Virgo data from O1, O2, and O3 can68

help inform predictions of the origins of known BBH69
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merger candidates. With just under 100 candidates of70

BBH systems as of O3 (Abbott et al. 2023; Mehta et al.71

2023; Nitz et al. 2023), statistical conclusions can begin72

to be made about the nature of BBH precession and,73

therefore, the origin of the BBH systems. These con-74

clusions may be especially useful in understanding the75

nature of binary evolution, dense stellar environments,76

and dynamical interactions.77

Currently, there exists a parameter χp that has been78

used to describe the precession of the orbit. However,79

claims of individual precessing candidates are contro-80

versial (Hannam et al. 2022; Payne et al. 2022). The81

evidence for precession in these individual events is in-82

conclusive because χp is not very informative. The is-83

sues with χp are described in detail in Section 2. This84

summer, we focus on defining a new parameter that can85

better constrain orbital precession of BBH systems. We86

begin by detailing the cause of controversy from χp in87

Section 2 before defining new parameters in Section 3.88

We then outline the statistical tests used to constrain89

the parameter in Section 4. We choose our parameter90

in Section 5 and apply it to LIGO data in Section 6.91

2. PROBLEM92

The effective precession parameter currently used to93

describe the precession of a BBH system, χp, is defined94

as95

χp = max

(
χ1 sin θS1L,

q(4q + 3)

3q + 4
χ2 sin θS2L

)
, (1)96

where χi is the dimensionless spin parameter of the BH97

i, q is the mass ratio m2/m1 (where m1 > m2), and98

θSiL is the angle between the spin S⃗ of BH i and the99

orbital angular momentum L⃗ (Schmidt et al. 2015). This100

quantity is geometrically defined as the maximum in-101

plane spin contribution (Schmidt et al. 2015). When102

χp = 0, the system is not precessing, and when χp = 1,103

the system is strongly precessing.104

When using this parameter with the express purpose105

of determining precession of individual events, there are106

two main issues: The first can be seen by the posterior107

distributions in Figure 1. Most of the posterior distribu-108

tions for χp are very broad. A broad posterior distribu-109

tion is not very informative on the true value associated110

with the data, as it makes it difficult to constrain it. The111

second is displayed by the prior distribution in Figure 1:112

the prior distribution π(χp) sharply approaches 0 as χp113

approaches 0.114

The first issue makes χp a poor parameter statistically.115

The second issue makes it hard to interpret whether116

aligned spins are consistent with the data from the χp117

posterior. However, by initially assuming the spins are118

Figure 1. The χp distributions of several observations from
Abbott et al. (2023). Note that most of the posteriors (up-
per curves) are very broad, only marginally differing from
the prior distribution (lower curves). For the more localized
posteriors, the localization only occurs at low values of χp

where the peak in the prior occurs, and these events have
high levels of uncertainty of astrophysical origin.

misaligned (as the probability of alignment is 0 in the119

prior in χp), the parameter fails to reject aligned spins.120

This is because the posterior distribution is defined as121

the prior distribution times the likelihood, so if the prior122
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Figure 2. The geometry of a BBH system. The spins of
each black hole are denoted by S⃗i (with the total spin Stot =
S⃗1 + S⃗2), the orbital angular momentum is expressed as L⃗,
and the total angular momentum (L⃗+ S⃗1 + S⃗2) is J⃗ . θLS is
the angle between L⃗ and S⃗tot. β is the angle between J⃗ and
L⃗.

is 0 at a value, then the posterior will always be 0 at that123

value.124

In this work, we aim to propose an alternative param-125

eter that addresses these two issues. Namely, we want a126

parameter that has a narrow posterior distribution, and127

whose prior density does not vanish for aligned spins.128

3. SELECTED PARAMETERS FOR TESTING129

Using the geometry of the BBH merger outlined in130

Figure 2, two alternative parameters were initially se-131

lected. First is θLS, the angle between L⃗ and the total132

spin S⃗tot = S⃗1 + S⃗2. This angle provides a direct ge-133

ometric understanding of the relationship between S⃗tot134

and L⃗, fundamentally relating to the orbital precession.135

The second is β, the angle between L⃗ and the total an-136

gular momentum J⃗ = S⃗tot+L⃗. β is especially promising137

because, as a precession indicator, it impacts the mag-138

nitude modulations and phase evolution of the wave-139

form (Fairhurst et al. 2020). Particularly, the parameter140

b = tan(β/2) is directly used to compute the waveform.141

However, unlike β, θLS, and χp, b has infinite bounds,142

making it more difficult to constrain a “maximum” pre-143

cession for the system. Regardless, θLS and β share the144

same statistical issue with χp: their probability densi-145

ties of both parameters tend towards zero when S⃗ and146

L⃗ are aligned. To address this issue, we instead consider147

the cosine of the angles, cos θLS and cosβ. This coordi-148

nate shift to cosine is chosen because it yields a non-zero149

probability density of aligned spins in the prior.150

4. TESTING EACH PARAMETER151

Figure 3. The distribution of the chirp mass for the ∼ 3000
injections used to construct the posteriors.

4.1. Constructing the Initial Parameter Test152

In order to measure how informative the three pa-153

rameters (χp, cos θLS, and cosβ) are, we needed to test154

them on known values. As the exact values of the main155

parameters from LIGO-Virgo-KAGRA sources are not156

known, we instead used synthetic data with posteriors157

formed from known injections. These injections were158

generated assuming an isotropic spin distribution. That159

is, all true angles between L⃗ and S⃗ are equally likely in160

the synthetic data. We used sampled posterior distri-161

butions for roughly 3000 known injections from a previ-162

ous work to begin our analysis.1 These injections were163

sorted into three mass distributions based on the chirp164

mass M of the BBH. The three M distributions are165

shown in Figure 3, where we consider low mass to be166

1 < M/M⊙ < 5, mid mass to be 5 ≤ M/M⊙ < 25, and167

high mass to be 25 ≤ M/M⊙ < 125.168169

Each point on Figure 3 corresponds to a different in-170

jected event. Using the sampled posterior distribution171

of base parameters of the events, we constructed poste-172

riors of our new precession parameters: χp, cos θLS, and173

cosβ.174

4.2. Methods of Statistical Analysis of Injections175

Due to the large number of samples, it became nec-176

essary to find a way to summarize all the information177

present in the posterior distributions of each event.178

Our new parameter aims to address two hypotheses:179

S⃗tot is either aligned with L⃗, or randomly oriented with180

1 The injections and posterior distributions can be found at https:
//zenodo.org/records/10910135.

https://zenodo.org/records/10910135
https://zenodo.org/records/10910135
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respect to it. Across many events, this corresponds to181

an aligned or isotropic spin distribution. We use the182

Neyman-Pearson Lemma to compare these two hypothe-183

ses.184

This is the strongest statistical test for distinguishing185

between two hypotheses H0 and H1. The test is defined186

as the likelihood ratio of the hypotheses, expressed as187

Λ =
p(d | H1)

p(d | H0)
(2)188

(Neyman & Pearson 1933).189

If the likelihoods are the same, then the ratio is equal190

to 1 and there is no difference between the hypotheses.191

Alternatively, if the likelihood of H1 is greater than the192

likelihood ofH0, thenH1 is more likely to be true. Some193

minimum threshold of Λ might be set to confirm if a194

given hypothesis is confidently true.195

We can express each hypothesis as a specific set of196

individual parameters:197

H0 : θ ∼ π(θ) (3)198

H1 : θ = θ∗. (4)199

H0 is expressed as a distribution of θ values, correspond-200

ing to an isotropic spin distribution. H1 is a specific case201

of the isotropic spin distribution that yields aligned S⃗202

and L⃗.203

Using the relationship between the likelihood L, the204

posterior P, the prior π, and the evidence Z,205

P =
Lπ

Z
(5)206

and the definitions of H0 and H1, we can express the207

likelihood p(d | H1) as208

p(d | H1)=p(d | θ∗) (6)209

p(d | θ∗)=L (7)210

L=
p(θ∗ | d, H0) p(d | H0)

π(θ∗ | H0)
. (8)211

Plugging this into Equation (2), we get212

p(θ∗ | d, H0)

π(θ∗ | H0)
. (9)213

However, a BBH system is not 1-dimensional, as it214

is defined by many parameters. Although precession is215

not necessarily based on a single parameter, our goal216

is to find a single parameter that can provide signifi-217

cant information on the precession of the system. We218

can express θ as a multidimensional parameter that con-219

tains a single parameter x that exclusively preserves the220

relevant precession information and all other unrelated221

parameters θ′ as222

θ = (x, θ′) (10)223

We can then define a new hypothesis H̃1 that remains224

as close to H1 as possible while only being based on a225

single parameter. This effectively makes the simplifying226

assumption that all the relevant precession information227

is contained within a single parameter. Under this as-228

sumption, H̃1 should be identical to H0 with the excep-229

tion of the precession parameter x. Ideally, there should230

only be one value of x, x∗, where H0 reduces to H̃1.231

That is, in an isotropic spin distribution, only one ori-232

entation of the vectors yields aligned S⃗tot with L⃗.2 We233

can express this assumption as234

π(θ′ | x∗, H̃1) = π(θ′ | x∗, H0) (11)235

and thus,236

π(θ | x∗, H̃1) = δ(x− x∗)π(θ
′ | x∗, H0). (12)237

It then follows that p(d | H1) ≈ p(d | H̃1). Using238

the same process as in Equations (6–8), we can express239

p(d | H̃1) as240

p(d | H̃1)=p(d | x∗, H̃1) (13)241

=p(d | x∗, H0) (14)242

=
p(x∗ | d, H0)p(d | H0)

π(x∗ | H0)
, (15)243

and plugging Equation (15) into Equation (2), we get244

the revised ratio245

Λ=
p(d | H̃1)

p(d | H0)
(16)246

=

p(x∗|d,H0)p(d|H0)
π(x∗|H0)

p(d | H0)
(17)247

=
p(x∗ | d,H0)

π(x∗ | H0)
(18)248

This ratio, called the Savage-Dickey Ratio (SDR), pro-249

vides a simpler way to compare the competing hypothe-250

ses that are expressed through a single parameter, al-251

lowing for a more quantitative way to evaluate the most252

informative parameter on the alignment of S⃗tot and L⃗.253

The most informative parameter should have high SDR254

values for events where S⃗tot and L⃗ are truly aligned and255

it should have low SDR values for events where S⃗tot and256

L⃗ are truly misaligned.257

2 This approximation does neglect some information. For exam-
ple, if the two spins having vertical components of S⃗ that align
with L⃗ but the horizontal components of their spins cancel, this
assumption fails to identify the spin misalignment in the system.
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Figure 4. Savage-Dickey ratios for four tested parameters. Each point represents an injection and associated parameter
estimation. The SDR used is between the hypotheses that the spins are aligned rather than isotropic. The true, injected value
is on the horizontal axis, while the Savage–Dickey ratio is on the vertical axis. The color bar symbolizes the strength of the
strength of the total spin S⃗tot. The likelihood ratio for χp is strongly clustered around values ranging from ∼ 1, making it a poor
test of spin alignment. Meanwhile, the likelihood ratio for cos θLS is slightly more informative. Because it spans several orders
of magnitude, strongly precessing BBH systems (cos θLS ∼ −1) would be much more likely than weakly precessing systems to
be ruled out as having aligned spins. β and cosβ have maximum SDR values similar to those of cos θLS but much lower SDRs
for highly misaligned cases.

We summarize the SDR data for each parameter in258

Figure 4. We demonstrate in a more quantitative way259

that the distribution of χp for most events are not260

very informative. However, it is more difficult to deter-261

mine if cosβ or cos θLS is a better parameter at distin-262

guishing aligned vs misaligned S⃗tot and L⃗. Regardless,263

this initial analysis provides a strong incentive to eval-264

uate the orbital precession of individual LIGO-Virgo-265

KAGRA sources using cos θLS or cosβ in place of χp.266

4.3. Numerical Difficulties in Calculating the267

Savage-Dickey Ratio268

The second issue with χp outlined in Section 2 stated269

that the prior approached 0 for the case of aligned S⃗tot270

and L⃗. This also makes the posterior distribution ap-271

proach 0 for aligned S⃗tot and L⃗. This means that we272

obtain an indeterminate form of 0
0 when taking the limit273

lim
β,b,χp→0

p(AlignedSpins | d)
π(AlignedSpins)

→ 0

0
. (19)274

When using L’Hôpital’s Rule and differentiating the275

numerator and denominator of the posterior and prior276

in the limit, we can avoid numerical difficulties in cal-277

culating the SDR, as we can avoid having the ratio of278

0
0 when calculating the SDRs. Ultimately, we can re-279

express the limit as280

lim
β,b,χp→0

p′(AlignedSpins | d)
π′(AlignedSpins)

. (20)281

Under the assumption that the distributions of χp, β,282
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Figure 5. The geometry used to derive Equation (21).

and b are triangular very close to 0, we can geometrically283

express the value of p′ and π′. Figure 5 demonstrates the284

geometry of the two curves. By finding the value of the285

parameter qp (qπ) whose posterior (prior) distribution286

contains the area ε, we can express the ratio in the limit287

as288

p′

π′ =
q2π
q2p

. (21)289

When employing this alternative expression of the SDR,290

we can avoid numerical difficulties that arise from the291

properties of the prior distribution. We also find that292

the SDRs from this ratio are relatively insensitive to the293

ε that when ε is small (ε = 0.003, 0.005, 0.007, 0.01).294

4.4. Selection Effects in the Synthetic Posteriors295

As mentioned earlier, the synthetic data was gener-296

ated based on an isotropic distribution of spin angles.297

However, the injections were also filtered to only allow298

events that would have signals recognizable by LIGO.299

As the mass of the BHs in the system increase, selection300

effects begin to occur. Most notably, the frequency of301

the BBH merger fmerger is inversely proportional to the302

mass, where fmerger ∝ 1/M . This means that more mas-303

sive BBHs merge at lower frequencies. The alignment of304

S⃗ and L⃗ also affects the frequency of the merger: highly305

misaligned S⃗ and L⃗ merge more quickly at lower fre-306

quencies. These two effects cause the final frequency of307

high-mass, strongly precessing mergers to occur at low308

frequencies, potentially being undetectable by LIGO.309

Figure 6 outlines the distribution of the injected cos θLS310

used to approximate the priors used for the SDRs of311

each parameter.312

5. CHOOSING A PARAMETER313

5.1. Evaluating the Divergence of Isotropic and314

Aligned Spin Distributions315

Although χp seems to be less informative than cosβ316

and cos θLS by looking at the trend of the SDRs, it be-317

came difficult to compare the effectiveness of cosβ or318

1.0 0.5 0.0 0.5 1.0
cos LS

0.0

0.2

0.4

0.6

0.8

1.0
Low Mass
Mid Mass
High Mass

Figure 6. The probability density distribution of injections
for the three mass distributions. The data was initially gen-
erated to have a flat prior regardless of mass, but as the mass
increases, the probability density of having aligned S⃗ and L⃗
increase. This is due to the filtering of events that exclusively
selects events that can be detected by LIGO, as described in
Section 4.4.

cos θLS as they are both relatively effective. We have319

just over 1000 synthetic posteriors for each of the three320

mass distributions, leaving over 3000 SDR values. One321

way to summarize the effectiveness of each parameter322

across all samples is to measure the Kullback-Leibler323

divergence DKL, a test that evaluates the difference be-324

tween two distributions. In particular, we used this to325

evaluate the difference between the likelihoods of aligned326

and isotropic spin distributions. By maximizing DKL327

between the two distributions with our parameter, we328

could find the parameter that yields the most divergent329

set of distributions. The Kullback-Leibler divergence330

between these two likelihoods is defined as331

DKL(p(d | H0) || p(d | H̃1))332

=

∫
dd p(d | H0) log2

p(d | H0)

p(d | H̃1)
, (22)333

which can be approximated as334

DKL ≈ 1

N

∑
dj∼H0

log2
p(dj | H0)

p(d | H̃1)
. (23)335

However, we have shown in Equations (16–18) that the336

inverse of this ratio of likelihoods can be approximated337

as the Savage-Dickey Ratio, the ratio of the posterior to338

the prior. Incorporating this result, we can express the339
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Table 1. DKL(p(d | H0) || p(d | H̃1))

Mass χp cos θLS β cos β b

Low 1.0 3.0 2.9 2.4 2.9

Mid 1.7 2.9 1.8 2.1 1.8

High 0.9 2.0 0.9 1.0 0.9

Notes: The DKL values of each parameter comparing the distribu-
tions of aligned to isotropic spins. The “Mass” column corresponds to
one of three mass distributions of the injections used to construct the
posteriors.

divergence as340

DKL≈
1

N

∑
dj∼H0

log2
π(x∗ | H0)

p(x∗ | d, H0)
(24)341

=− 1

N

∑
dj∼H0

log2 SDR. (25)342

The DKL values for each parameter across the three343

distributions used in this study are reported in Table 1.344

χp consistently has the lowest DKL while cos θLS con-345

sistently has the highest. This means that χp is the346

least effective at distinguishing between the isotropic347

and aligned spin distributions while cos θLS is the best.348

We expect DKL(β) = DKL(cosβ) = DKL(b) as they are349

just different coordinate expressions of β, but this is not350

the case. This suggests that our numerical computa-351

tion has limited accuracy. Regardless, none of the DKL352

values for any coordinate of β in any mass distribution353

are greater than that of cos θLS. Additionally, as the354

distribution goes to higher masses, it becomes more dif-355

ficult to distinguish between isotropic and aligned spins,356

especially between β and χp.357

Given these results, it appears that cos θLS is the358

strongest parameter at distinguishing misaligned spins359

from aligned spins, while χp is the weakest.360

5.2. Relationship to Other Parameters361

Although cos θLS appears to most accurately diagnose362

the precession of a BBH system, it is important to com-363

pare it to other parameters. We have already shown that364

the mass of the BBH system influences which events may365

be detected by LIGO. However, its relationship with the366

total spin should also be considered. Figure 4 demon-367

strates that cos θLS is more effective at rejecting aligned368

spins for misaligned systems with a high total spin.369

6. UTILIZING LIGO DATA370

By identifying triggers with high pastro through a pop-371

ulation model, we then evaluated events that are aligned372

with those in the IAS catalog (Olsen et al. 2022). As-373

suming a flat prior for cos θLS (this time with no selec-374

tion effects as with the earlier injected data), we sampled375

each event to construct a posterior distribution of each376

parameter.377

The DKL of cos θLS provides evidence that cos θLS is378

the most informative of the tested parameters. By con-379

structing posterior distributions of cos θLS, we can eval-380

uate if any individual events are precessing. Narrow381

posterior distributions that reject alignment are ideal382

for providing strong evidence of precession in an indi-383

vidual candidate. Conversely, narrow posterior distri-384

butions that include alignment would provide evidence385

for no precession, and broad distributions make it dif-386

ficult to interpret the state of the system’s precession.387

We provide the posterior distributions of cos θLS and χp388

for each event in O3a in Figure 7.389

Recall that an SDR with high values corresponds to390

events that are likely not precessing, low SDRs corre-391

spond to events with high precession. We calculate the392

SDR using the reconstructed posterior distributions and393

flat cos θLS prior. Figure 8 demonstrates two things394

about the O3a data: there is a broader range of SDRs for395

cos θLS, meaning that cos θLS can more strongly support396

or reject precession (as shown with the DKL values), and397

there are individual events that have stronger evidence398

for precession as obtained by the posterior when using399

cos θLS instead of χp.400

Ultimately, the events with the lowest SDR401

values may be the most likely to be precess-402

ing. These events, with high levels of con-403

fidence, are GW190408 181802, GW190915 235702,404

GW190707 093326, and GW190421 213856.405

Each event with evidence of precession has marginal406

significance, meaning that we cannot make claims of in-407

dividual precession on the events that we have currently408

analyzed.409

7. CONCLUSION410

Overall, we provided a series of statistical tests to de-411

termine a stronger parameter for determining the pre-412

cession of individual events. Using these methods, we413

found that cos θLS was more informative than χp for414

these purposes. Using cos θLS, we could identify events415

that may be precessing with higher confidence than with416

χp. We would like to analyze events from additional417

runs such as O3b and O2. We would also like to em-418

ploy future work to study the overall population of spin-419

orbital angular momentum alignment will be completed.420

This can be informative on the true distribution of spin-421

orbital angular momentum, ultimately providing hints422

into the formation channel of binary black hole systems.423
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Figure 7. The posterior distributions (blue) of cos θLS and χp against the prior distributions (gray) of the events in O3a as
we found in our population model. We use a modified IAS Pipeline to include events with pastro > 0.5. The distributions of χp

are broad and resemble the priors, while the posteriors of cos θLS tend to be more localized in some cases. The probability of
astrophysical origin, pastro is included below the event name.
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Figure 8. A histogram of the Savage-Dickey Ratios of χp

and cos θLS, calculated from the posterior distributions from
the events in the catalogue from our population inference.
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