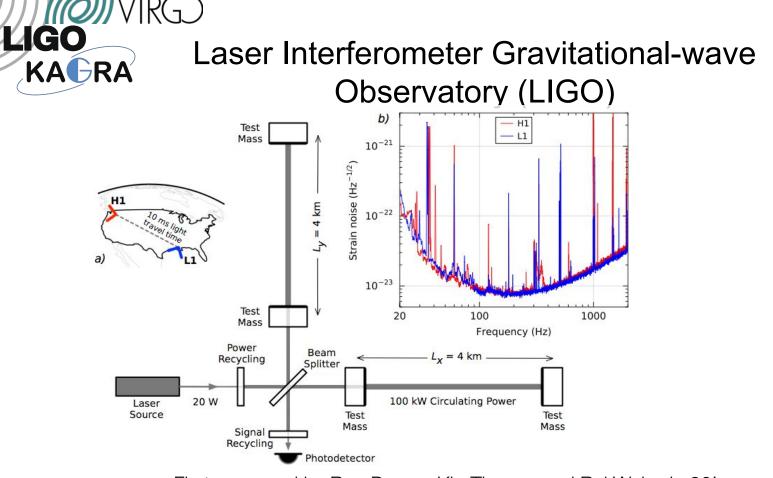


Cosmology with Gravitational-wave Observations

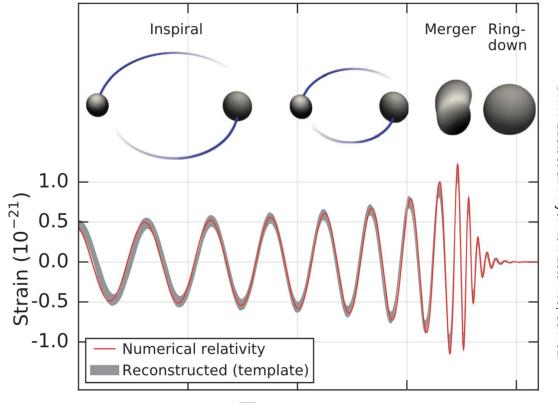
Patrick Brady, University of Wisconsin-Milwaukee


Lemaitre Conference 17 June 2024

https://dcc.ligo.org/G2401288

LIGO KACRA

International Gravitational-Wave Observatory Network (IGWN)



First proposed by Ron Drever, Kip Thorne, and Rai Weiss in 80's. First funding in 1992; civil construction ended 2000; Initial LIGO 2002-2010

Compact object mergers

Pairs of stellar-mass black holes, neutron stars, or a stellar-mass black hole and neutron star

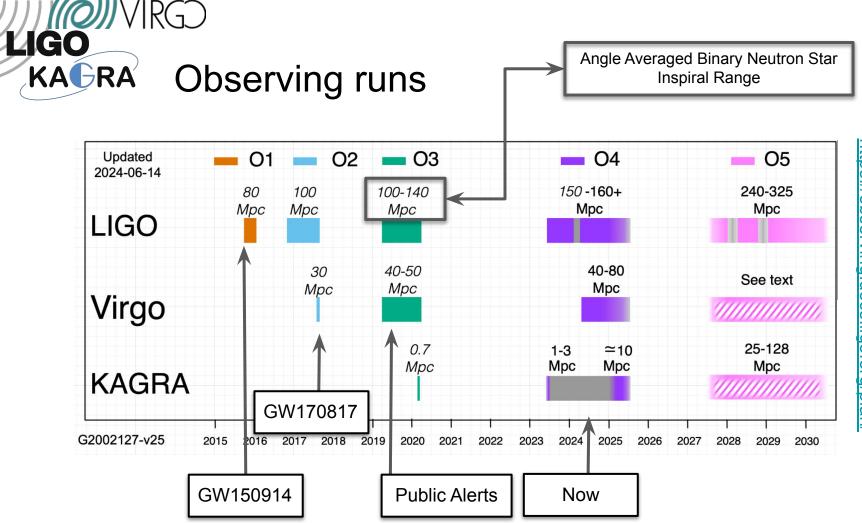
B. P. Abbott et al. Phys. Rev. Lett. 116, 061102

Time

4

KAGRA Strain (quadrupole) at the detector

$$h(t) = \frac{\mathcal{M}}{d_L} \frac{\Theta(i,\lambda,\delta,\psi)}{d_L} \left[\pi \mathcal{M}' f(\mathcal{M}',t-t_0)\right]^{2/3} \cos\left[\Phi(t_0-t)+\Psi\right]$$


$$\Phi = -2 \left(\frac{t_0 - t}{\mathcal{M}'} \right)^{5/8} \qquad \qquad \mathcal{M}' = (1 + z) \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

$$f = \frac{1}{2\pi} \frac{\partial \Phi}{\partial t} = \frac{1}{\pi \mathcal{M}'} \left(\frac{5}{256} \frac{\mathcal{M}'}{t_0 - t} \right)^{3/8}$$

RG

LIGO

- 1---

https://observing.docs.ligo.org/plan/


Detections

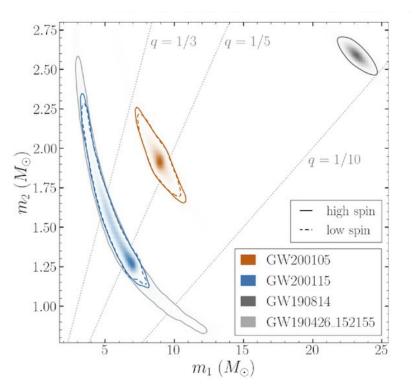
GW150914

- First astrophysical source Ο
- Binary black holes exist 0

GW170817

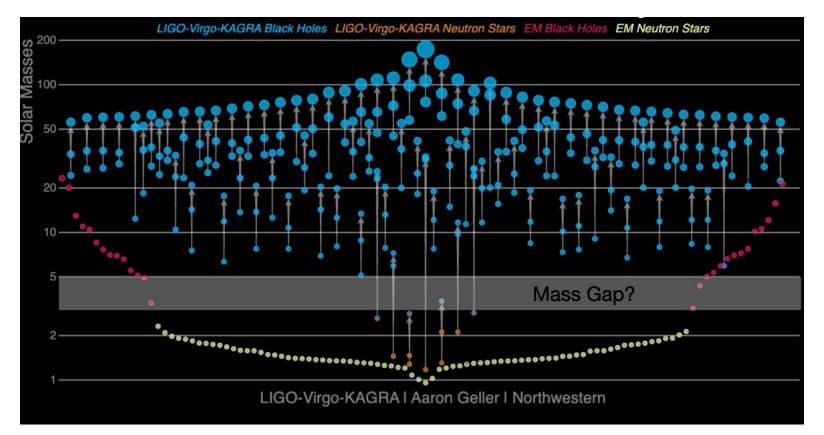
- Binary neutron star mergers are Ο gamma-ray burst progenitors
- GW190521
 - Black holes exist in pair 0 instability mass gap
- GW190814
 - Compact objects exist with Ο masses between 2-5 Msun

R. Abbott *et al* 2021 *ApJ*L **915** L5

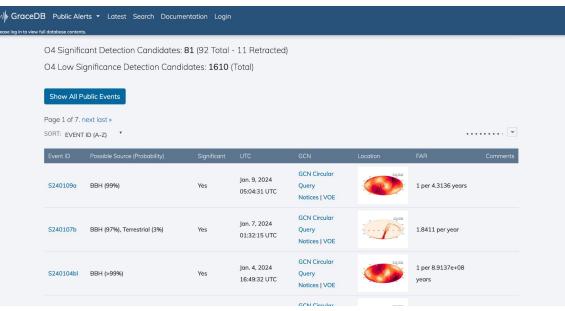

Mergers involving neutron stars

• GW170817 & GW190425

LIGO


KAGRA

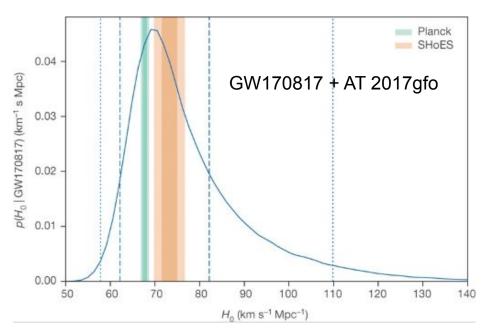
- Binary neutron star (BNS) merger waves
- GW170817 & GRB 170817A
 - Fractional difference in speed of gravity and the speed of light is between -3 x 10⁻¹⁵ and 7 x 10⁻¹⁶
- GW170817 & AT 2017gfo
 - Binary neutron star mergers produce kilonova explosions that generate heavy elements
 - B. P. Abbott et al 2017 ApJL 848 L13


KAGRA Masses in the stellar graveyard

LIGO

KACRA The fourth observing run (O4)

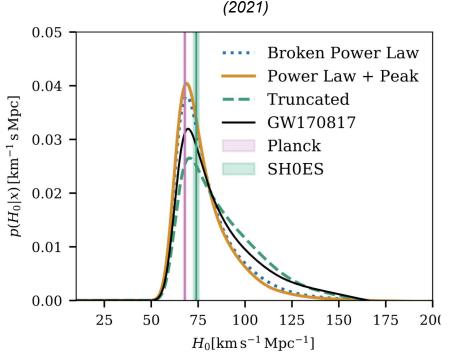
- O4a: 24 May 2023 16 Jan 2024, LIGO and KAGRA for 1 month
- O4b: 10 April 2024 Jun 2025, LIGO and Virgo
- Binary detection rates
 - O3 ~ 1 / 5 days
 - O4 ~ 1 / (2.8 days)
 - O5 ~ 3 / day
- Improved public alerts
 - Localization
 - Classification
 - Latency
 - Early-warning
 - Low-significance



LIGO KACRA

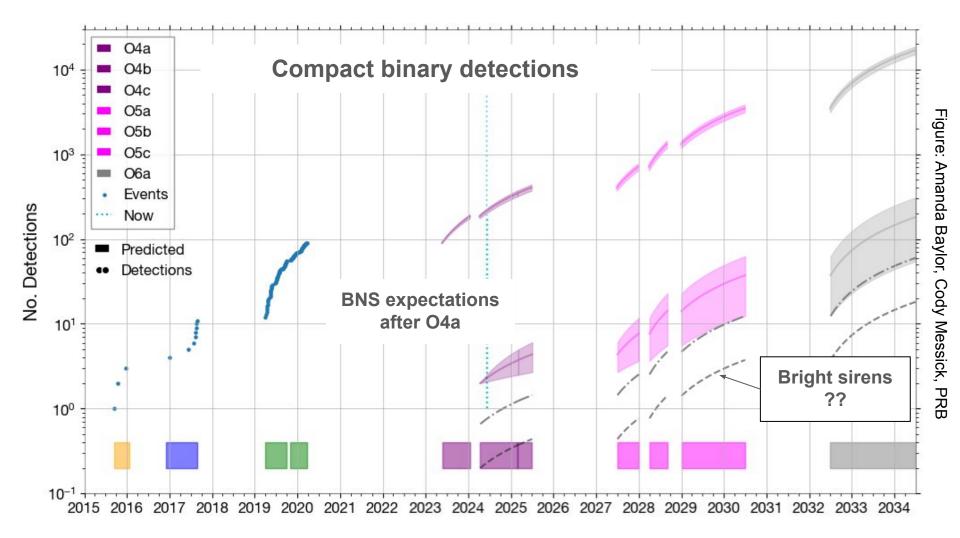
Cosmology with gravitational waves

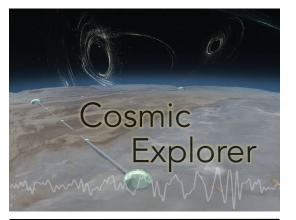
- Gravitational waves from binaries are standard sirens
 - Measure the luminosity distance to the source and redshifted chirp mass
- Get redshift some other way
 - Electromagnetic counterpart, e.g. GW 170817, GRB 170817A, AT 2017gfo
- Sub-percent accuracy with many
 - Cross correlate with galaxy redshifts [Schutz, Nature **323**, 310 (1986)]
 - Mass scale imprinted on spectrum of detected binary mergers [Taylor, Gair & Mandel, Phys. Rev. D 85, 023535 (2012); Farr et al (2019) ApJL 883 L42]

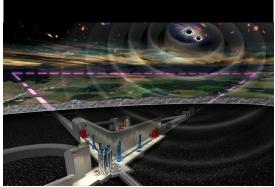

B P Abbott *et al. Nature* **551**, 85–88 (2017) doi:10.1038/nature24471

LIGO KAGRA

Challenges for cosmology with GW

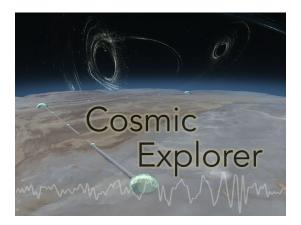

- **Bright sirens**: Binaries with detectable EM counterparts are rare
 - With ~0-3 BNS mergers detectable in O4, expect ~0 detectable kilonova. GRBs may be more powerful in the future.
- **Dark sirens**: completeness of galaxy catalogs decreases rapidly with redshift making percent accuracy difficult.
- **Spectral sirens**: must measure the mass and cosmology simultaneously.
 - ~1000 events could give ~3% accuracy according to Hernandez and Ray, arXiv:2404.02522; Farah et al arXiv:2404.02210

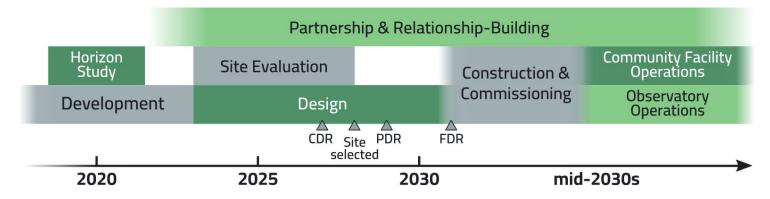

R Abbott et al. arXiv:2111.03604


LIGO KACRA What's next?

- LIGO Aundha Observatory (LAO) is to be constructed in India and operated as part of the LIGO network in the 2030s.
- A[#]: targeted improvements to the LIGO detectors
 - Report of LSC post-O5 study group [Fritschel et al, https://dcc.ligo.org/LIGO-T2200287/public]
 - Achieve close to a factor of 2 amplitude sensitivity improvement with larger test masses, better seismic isolation, improved mirror coatings, higher laser power, better squeezing ...
 - Begin observing at the end of 2031 and observe for several years.
 - A[#] an engine for observational science and a pathfinder for next-generation technologies.
 - A network including LIGO A# detectors would be a cornerstone for multimessenger discovery.
- Virgo has scoped similar improvements, called VirgoNEXT, with similar timetable. KAGRA is focused on reaching its current target.

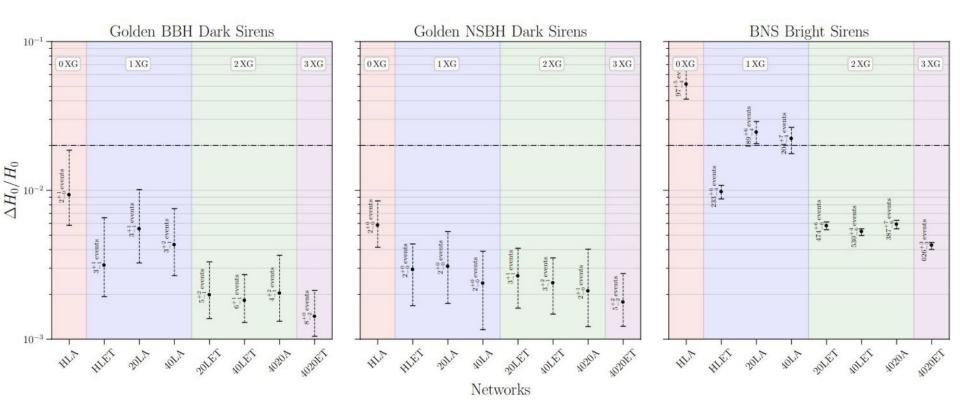
KAGRA Next Generation Detectors

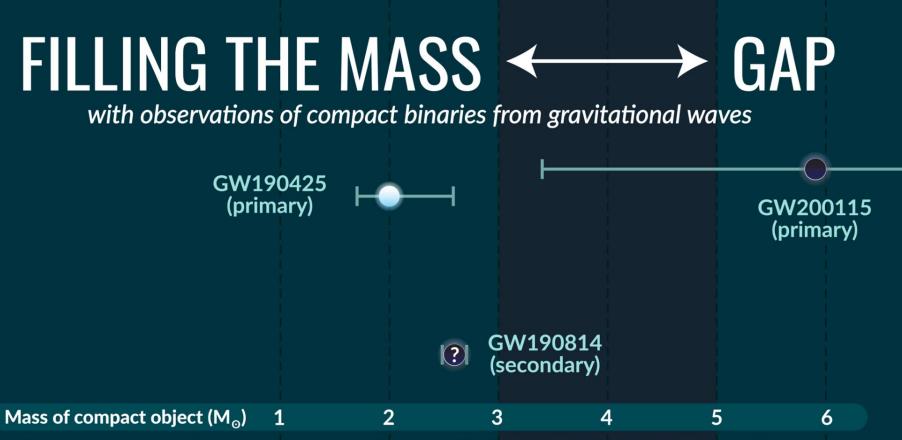




Science			CE with 2G					CE with ET				CE, ET, CE South					
Theme	Goals	2G	20	40	20+20	20+40	40+40	20	40	20+20	20+40	40+40	20	40	20+20	20+40	40+40
Black holes and neutron stars throughout cosmic time	Black holes from the first stars																
	Seed black holes																
	Formation and evolution of compact objects																
Dynamics of dense matter	Neutron star structure and composition												ĺ				
	New phases in quantum chromodynamics																
	Chemical evolution of the universe																
	Gamma-ray burst jet engine																
Extreme gravity and fundamental physics																	
Discovery potential																	
lechnical risk																	

A Horizon Study for Cosmic Explorer https://arxiv.org/abs/2109.09882


Togularessing tog the ward on struction. and construction. LIGOCC.cosmicexplorer.org/CE-P2300018/public KACRA Cosmic Explorer Timeline



Gupta et al. arXiv:2307.10421 (2023)

Thanks to all my collaborator especially those in the LIGO-Virgo-KAGRA Collaboration

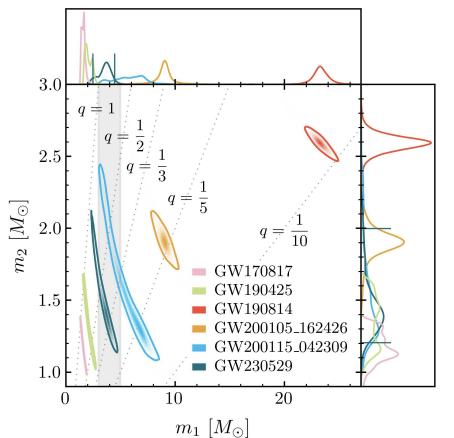


Includes components of compact binary mergers detected with a False Alarm Rate (FAR) of less than 0.25 per year

Figure credit: Shanika Galaudage / Observatoire de la Côte d'Azur

FILLING THE MASS ←

with observations of compact binaries from gravitational waves

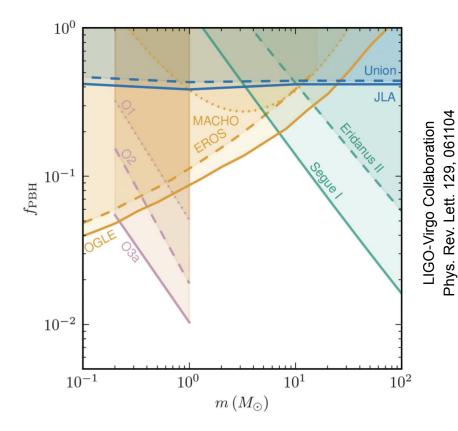


Includes components of compact binary mergers detected with a False Alarm Rate (FAR) of less than 0.25 per year

Figure credit: Shanika Galaudage / Observatoire de la Côte d'Azur

GAP

LIGO KACRA GW230529 - Properties


Primary mass m_1/M_{\odot}	$3.6\substack{+0.8 \\ -1.2}$
Secondary mass m_2/M_{\odot}	$1.4\substack{+0.6 \\ -0.2}$
Mass ratio $q = m_2/m_1$	$0.39\substack{+0.41 \\ -0.12}$
Total mass M/M_{\odot}	$5.1\substack{+0.6 \\ -0.6}$
Chirp mass \mathcal{M}/M_{\odot}	$1.94\substack{+0.04 \\ -0.04}$
Detector-frame chirp mass $(1+z)\mathcal{M}/M_{\odot}$	$2.026\substack{+0.002\\-0.002}$
Primary spin magnitude χ_1	$0.44\substack{+0.40\\-0.37}$
Effective inspiral-spin parameter $\chi_{\rm eff}$	$-0.10\substack{+0.12\\-0.17}$
Effective precessing-spin parameter $\chi_{\rm p}$	$0.40\substack{+0.39 \\ -0.30}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	201^{+102}_{-96}
Source redshift z	$0.04\substack{+0.02\\-0.02}$

LIGO-Virgo-KAGRA COllaboration https://arxiv.org/abs/2404.04248

LIGO KACRA

Search for subsolar-mass binaries

- Search for compact binary mergers with at least one object of mass 0.2 1 Msun.
- No detections.
- Example constraints on fraction of dark matter in primordial black holes from an isotropic distribution of equal-mass binaries.

