Stochastic Gravitational-Wave Background Guo Chin Liu Department of Physics, Tamkang University

Open Data Workshop, April 18-20, 2024

Stochastic Background Superposition of many faint, unsolved gravitational-wave signals

- Cosmological sources: phase transition, inflation, cosmic string...

Astrophysics sources: CBC, Core collapse supernovae, rapidly rotating NS...

Plane wave expansion of metric perturbations

$$h_{ab}(t, \vec{x}) = \int_{-\infty}^{\infty} df \int d^2 \Omega$$
Integrate over frequencies

GW from all sky directions

We can investigate the statistical properties of SGWB by measuring

$$\left\langle h_{ab}(t, \vec{x}) \right\rangle$$

$$\left\langle h_{ab}(t, \vec{x}) h_{cd}(t', \vec{x}') \right\rangle$$

$$\left\langle h_{ab}(t, \vec{x}) h_{cd}(t', \vec{x}') h_{ef}(t'', \vec{x}'') \right\rangle$$

Polarizations

 $\left\langle h_A(f,\hat{n}) \right\rangle$ $\left\langle h_A(f,\hat{n})h_{A'}(f',\hat{n}') \right\rangle$

 $\langle h_A(f, \hat{n}) h_{A'}(f', \hat{n}') h_{A''}(f'', \hat{n}'') \rangle$

In the previous studies of SGWB, we assumed:

- The GW signals (and noise) are stationary Gaussian
- The GW signals are unpolarized
- Noise in different detectors is uncorrelated

The rate of signals is large enough, the signal will be stationary Gaussian

The rate of signals is small, the signals will be non-stationary and non-Gaussian 10.0 noise 7.5 5.0 2.5 strain 0.0 -2.5 -5.0 -7.5 -10.00 5 10 30 25

The Gaussian backgrounds are fully characterized by the quadratic expectation value. For non-Gaussian backgrounds, higher order moments are needed.

Gaussian Background Quadratic expectation values

For a stationary, Gaussian, unpolarized and isotropic background:

$$\left\langle h_A(f,\hat{n})h_{A'}^*(f',\hat{n}')\right\rangle = \frac{1}{16\pi}S_h(f)\delta(f-f')\delta(f-$$

 $S_h(f)$: one-sided GW strain power spectral density function

For a stationary, Gaussian, unpolarized and anisotropic background:

$$\left\langle h_A(f,\hat{n})h_{A'}^*(f',\hat{n}')\right\rangle = \frac{1}{4}\mathcal{P}(f,\hat{n})\delta(f-f')$$

 $\mathscr{P}(f, \hat{n})$: spatial distribution of GW power on the sky

- $\delta_{AA'}\delta^2(\hat{n},\hat{n}')$

$$S_h(f) = \frac{3H_0^2}{2\pi^2} \frac{\Omega_{GW}(f)}{f^3}$$
$$\Omega_{GW}(f) \equiv \frac{1}{\rho_c} \frac{d\rho_{GW}}{d\ln f}$$

Fractional energy density spectrum in GW

AA'

What we try to learn from SGWB?

- Energy level of the isotropic GW background
 - Tensor and non-tensorial polarization background
 - Implications on cosmological and astrophysical models
- Anisotropic GW background
 - Any (detectable) GW signals from particular direction and/or at particular frequency (for example: due to the kinetic dipole or distribution of matter in local universe)
- Intermittent background
 - Learn the duty cycle and energy density contributed by BBH mergers.

 $\Omega_{GW}(f)$

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \int_0^\infty dz \frac{N(z)}{1+z} \left[f_r \frac{dE_{GW}}{df_r} \right]_{f_r = f(1+z)}$$

N(z): number of GW emitters as function of z

 $\frac{dE_{GW}}{df_r}$: spectral energy density of a specific source

The spectral dependence of a specific source is often reduced to a power law

$$\Omega_{GW}(f) = \Omega_{GW}(f_{\text{ref}}) \left(\frac{f}{f_{\text{ref}}}\right)^{\alpha}$$

Rennin et al. 2022

Search Gaussian SGWB

SGWB contributes extra power on our data.

Problem: Distinguishing GW signals from noise in individual detectors is challenging.

Solution: Cross-Correlation of the data from two detectors can suppress the uncorrelated noise

Output in detector I :
$$\tilde{h}_I(f) = \int d^2 \Omega_{\hat{n}} \sum_A R_I^A(f, \hat{n}) h_I$$

Detector response $R_I^A(f, \hat{n}) = \frac{1}{2}(u^a u^b - f^a)$

$$\gamma(\hat{n}, f, t) = \frac{1}{2} \sum_{A} F_1^A(\hat{n}, t) F_2^A(\hat{n}, t) e^{i2\pi f \hat{n} \cdot \Delta \vec{x}/c}$$

 $\gamma(\hat{n}, f, t)$: a geometry factor depends the separation of detectors and relative orientation of arms

Geometric factor H1-L1

- $\gamma(\hat{n}, f = 0, t)$, around the vicinity of two detectors, gives the size of field of view
- For higher frequencies, lines indicate regions with the same time delay to two detectors.
- Separation between the positive and negative lobes response provides the resolution of the image.
- The location of the positive and negative lobes are shifted relative to one another for the real and imaginary parts

• $\Delta \theta \simeq \frac{wavelength}{2}$ $2\Delta x$

Geometric factor Virgo-KAGRA

- $\gamma(\hat{n}, f = 0, t)$, around the vicinity of two detectors, gives the size of field of view
- For higher frequencies, lines indicate regions with the same time delay to two detectors.
- Separation between the positive and negative lobes response provides the resolution of the image.
- The location of the positive and negative lobes are shifted relative to one another for the real and imaginary parts

Isotropic Background

$$\Gamma_{IJ}(f) = \frac{1}{8\pi} \int d^2 \Omega_{\hat{n}} \sum_{A} F_I^A(\hat{\theta}, t) F_J^A(\hat{\theta}, t) e^{i2t}$$

 $\Gamma_{IJ}(f)$ is the so-called overlap function of two detectors. It is like the transfer function between GW strain power $S_h(f)$ and cross power $\langle C(f,t) \rangle$

$2\pi f\hat{\theta}\cdot\Delta\vec{x}/c$

Analysis Processes

Anisotropic Studies

Implications on astrophysics

Pygwb: Isotropic Search pipeline

- Analyzing the data
- Run statistical checks
- Parameter estimation
- Simulate your own data

About pygwb Installation Tutorials Demos API pygwb paper Citing pygwb GitHub Contributing guide Submit an issue

https://pygwb.docs.ligo.org/pygwb/

pygwb: A python-based, user-friendly library for gravitational-wave background (GWB) searches with ground-based interferometers.

pygwb provides a modular and flexible codebase to analyse laser interferometer data and design a GWB search pipeline. It is tailored to current ground-based interferometers: LIGO Hanford, LIGO Livingston, and Virgo, but can be generalized to other configurations. It is based on the existing packages gwpy and bilby, for optimal integration with widely-used GW data anylsis tools.

pygwb also includes a set of pre-packaged analysis scripts which may be used to analyse data and perform large-scale searches on a high-performance computing cluster efficiently.

More about pygwb	Installing pygwb	Tutorials
Demos	Module API	Contributing to pygwb

Pygwb: Isotropic Search pipeline We define an estimator $\hat{C}_{IJ} = \frac{2}{T} \frac{\text{Re}[\tilde{s}_I(f)\tilde{s}_J^*(f)]}{\Gamma_{IJ}(f)S_0(f)}$, where $S_0(f) = \frac{3H_0^2}{10\pi^2 f^3}$ and T is the duration of segment. Uncertainty: $\sigma^2 = \frac{1}{2T\Delta f} \frac{P_I(f)P_J(f)}{\Gamma_{II}^2(f)S_0^2(f)}$

- Analysis parameters: \bullet
 - Duration of segments : 192 s
 - Use the Hand window for FFT and Overlap factor is 50%
 - Sampling rate: downsample from 16384 Hz to - Notch noise lines due (calibration lines, power 4096 Hz line harmonics, etc.)
 - Coarse-grain to the frequency resolution 1/32 Hz
 - Analysis frequency: 20-1726Hz

- Removing artifact data:
 - Applying gating scheme to remove loud glitches
 - Delta-sigma cut to remove the non-stationary

O3 Isotropic Results

Cross-correlation spectra combining from O1-O3 (including O3 Virgo). The spectrum is consistent with expectations from uncorrelated, Gaussian noise.

O3 Isotropic Results

Upper limits on $\Omega_{gw}(f = 25Hz)$

	Uniform prior			Log-uniform prior			
α	O3	O2 43	Improvement	O3	O2 43	Imp	
0	1.7×10^{-8}	6.0×10^{-8}	3.6	5.8×10^{-9}	$3.5 imes 10^{-8}$		
2/3	1.2×10^{-8}	4.8×10^{-8}	4.0	3.4×10^{-9}	3.0×10^{-8}		
3	1.3×10^{-9}	$7.9 imes 10^{-9}$	5.9	3.9×10^{-10}	5.1×10^{-9}		
Marg.	2.7×10^{-8}	1.1×10^{-7}	4.1	6.6×10^{-9}	3.4×10^{-8}		

Fiducial models predictions and projected sensitivities

