Open Data Workshop, April 18-20, 2024

Stochastic Gravitational-Wave Background Guo Chin Liu Department of Physics, Tamkang University

Stochastic Background Superposition of many faint, unsolved gravitational-wave signals

- Cosmological sources: phase transition, inflation, cosmic string…
-

• Astrophysics sources: CBC, Core collapse supernovae, rapidly rotating NS…

Plane wave expansion of metric perturbations

$$
h_{ab}(t, \overrightarrow{x}) = \int_{-\infty}^{\infty} df \int d^2\Omega
$$

Integrate over frequencies

GW from all sky directions

We can investigate the statistical properties of SGWB by measuring

Polarizations

 $\langle h_A(f, \hat{n}) \rangle$

 $\langle h_A(f, \hat{n})h_A(f', \hat{n}') \rangle$

 $\langle h_A(f, \hat{n})h_{A'}(f', \hat{n}')h_{A''}(f'', \hat{n}'') \rangle$

$$
\langle h_{ab}(t, \overrightarrow{x}) \rangle
$$

$$
\langle h_{ab}(t, \overrightarrow{x})h_{cd}(t', \overrightarrow{x}') \rangle
$$

$$
\langle h_{ab}(t, \overrightarrow{x})h_{cd}(t', \overrightarrow{x}')h_{ef}(t'', \overrightarrow{x}'') \rangle
$$

In the previous studies of SGWB, we assumed:

The rate of signals is large enough, the signal will be stationary Gaussian

- The GW signals (and noise) are stationary Gaussian
- The GW signals are unpolarized
- Noise in different detectors is uncorrelated

The Gaussian backgrounds are fully characterized by the quadratic expectation value. For non-Gaussian backgrounds, higher order moments are needed.

Gaussian Background Quadratic expectation values

For a stationary, Gaussian, unpolarized and isotropic background:

$$
\left\langle h_A(f,\hat{n})h^*_A(f',\hat{n}') \right\rangle = \frac{1}{16\pi} S_h(f)\delta(f-f')\delta_{AA'}\delta^2(\hat{n},\hat{n}')
$$

-
- ̂
-

 $S_h(f)$: one-sided GW strain power spectral density function

For a stationary, Gaussian, unpolarized and anisotropic background:

$$
\left\langle h_A(f,\hat{n})h^*_A(f',\hat{n}') \right\rangle = \frac{1}{4} \mathcal{P}(f,\hat{n}) \delta(f-f') \delta_{AA'}
$$

 $\mathscr{P}(f, \hat{n})$: spatial distribution of GW power on the sky

$$
S_h(f) = \frac{3H_0^2}{2\pi^2} \frac{\Omega_{GW}(f)}{f^3}
$$

$$
\Omega_{GW}(f) \equiv \frac{1}{\rho_c} \frac{d\rho_{GW}}{d \ln f}
$$

Fractional energy density spectrum in GW

What we try to learn from SGWB?

- Energy level of the isotropic GW background
	- Tensor and non-tensorial polarization background
	- Implications on cosmological and astrophysical models
- Anisotropic GW background
	- Any (detectable) GW signals from particular direction and/or at particular frequency (for example: due to the kinetic dipole or distribution of matter in local universe)
- Intermittent background
	- Learn the duty cycle and energy density contributed by BBH mergers.

 $\Omega_{GW}(f)$

$$
\Omega_{GW}(f) = \frac{1}{\rho_c} \int_0^\infty dz \frac{N(z)}{1+z} \left[f_r \frac{dE_{GW}}{df_r} \right]_{f_r=f(1+z)}
$$

 $N(z)$: number of GW emitters as function of z

 f_r : emission frequency in the rest frame of the source

: spectral energy density of a specific source dE_{GW} *dfr*

The spectral dependence of a specific source is often reduced to a power law

$$
\Omega_{GW}(f) = \Omega_{GW}(f_{\text{ref}}) \left(\frac{f}{f_{\text{ref}}}\right)^{\alpha}
$$

Rennin et al. 2022

Search Gaussian SGWB

SGWB contributes extra power on our data.

Problem: Distinguishing GW signals from noise in individual detectors is challenging.

Solution: Cross-Correlation of the data from two detectors can suppress the uncorrelated noise

Output in detector I:
$$
\tilde{h}_I(f) = \int d^2 \Omega_{\hat{n}} \sum_A R_I^A(f, \hat{n}) h
$$

\nDetector response $R_I^A(f, \hat{n}) = \frac{1}{2} (u^a u^b - \hat{n})$

Cross-Correlation of two detectors I and $J: \langle C(f, t) \rangle =$

 $\gamma(\hat{n},f,t)$: a geometry factor depends the separation of detectors and relative orientation of arms

$$
\gamma(\hat{n}, f, t) = \frac{1}{2} \sum_{A} F_1^A(\hat{n}, t) F_2^A(\hat{n}, t) e^{i2\pi f \hat{n} \cdot \Delta \overrightarrow{x}/c}
$$

Geometric factor H1-L1

- $\gamma(\hat{n}, f = 0,t)$, around the vicinity of two detectors, gives the size of field of view
- For higher frequencies, lines indicate regions with the same time delay to two detectors.
- Separation between the positive and negative lobes response provides the resolution of the image.
- The location of the positive and negative lobes are shifted relative to one another for the real and imaginary parts

• $\Delta\theta \simeq$ *wavelength* 2Δ*x*

Geometric factor Virgo-KAGRA

- $\gamma(\hat{n}, f = 0,t)$, around the vicinity of two detectors, gives the size of field of view
- For higher frequencies, lines indicate regions with the same time delay to two detectors.
- Separation between the positive and negative lobes response provides the resolution of the image.
- The location of the positive and negative lobes are shifted relative to one another for the real and imaginary parts

Isotropic Background

$$
\Gamma_{IJ}(f) = \frac{1}{8\pi} \int d^2\Omega_{\hat{n}} \sum_A F_I^A(\hat{\theta}, t) F_J^A(\hat{\theta}, t) e^{i2\pi f \hat{\theta} \cdot \Delta \overrightarrow{x}/c}
$$

 $\Gamma_{IJ}(f)$ is the so-called overlap function of two detectors. It is like the transfer function between GW strain power $S_h(f)$ and cross power $\langle C(f,t) \rangle$

T

Analysis Processes

Implications on astrophysics

Anisotropic Studies

Pygwb: Isotropic Search pipeline

https://pygwb.docs.ligo.org/pygwb/

pygwb: A python-based, user-friendly library for gravitational-wave background (GWB) searches with ground-based interferometers.

pygwb provides a modular and flexible codebase to analyse laser interferometer data and design a GWB search pipeline. It is tailored to current ground-based interferometers: LIGO Hanford, LIGO Livingston, and Virgo, but can be generalized to other configurations. It is based on the existing packages gwpy and bilby, for optimal integration with widely-used GW data anylsis tools.

pygwb also includes a set of pre-packaged analysis scripts which may be used to analyse data and perform large-scale searches on a high-performance computing cluster efficiently.

- Analyzing the data
- Run statistical checks
- Parameter estimation
- Simulate your own data

About pygwb Installation **Tutorials** Demos **API** pygwb paper Citing pygwb **GitHub** Contributing guide Submit an issue

- Analysis parameters:
	- Duration of segments : 192 s
	- Use the Hand window for FFT and Overlap factor is 50%
	- Sampling rate: downsample from 16384 Hz to 4096 Hz - Notch noise lines due (calibration lines, power line harmonics, etc.)
	- Coarse-grain to the frequency resolution 1/32 Hz
	- Analysis frequency: 20-1726Hz

Pygwb: Isotropic Search pipeline We define an estimator $C_{IJ} = \frac{1}{T} \frac{1}{\Gamma} \frac{1}{(f) \Gamma(f)} \frac{1}{(f+1)}$, where $S_0(f) = \frac{0}{10\pi^2 f^3}$ and T is the duration of segment. 2 *T* $\text{Re}[\tilde{s}_I(f)\tilde{s}_J^*(f)]$ $\Gamma_{IJ}(f)S_0(f)$ $S_0(f) =$ $3H_0^2$ $10\pi^2 f^3$ Uncertainty: $\sigma^2 =$ 1 2*T*Δ*f* $P_I(f)P_J(f)$ $\Gamma_{IJ}^2(f)S_0^2(f)$

- Removing artifact data:
	- Applying gating scheme to remove loud glitches
	- Delta-sigma cut to remove the non-stationary

O3 Isotropic Results

Cross-correlation spectra combining from O1-O3 (including O3 Virgo). The spectrum is consistent with expectations from uncorrelated, Gaussian noise.

O3 Isotropic Results

Upper limits on $\Omega_{gw}(f = 25 Hz)$

Fiducial models predictions and projected sensitivities

