

Introduction to the GW Science/Analysis

Takahiro Sawada Institute for Cosmic Ray Research (ICRR), The University of Tokyo

> Wave Open Data Workshop #7 (2024) National Museum of Natural Science, Taichung April 18, 2024

Many materials were reproduced from VIR-0245A-23, LIGO-G2200820

LIGO Hanford

LIGO Livingston

- Increase the detection confidence
- Source sky localization
- Source parameters inference
- GW polarization determination
- Astrophysics of the sources

A Global Network of Gravitational Wave Observatories

GEO600

firge

KAGRA •

LIGO India

What are Gravitational Waves (GW) ?

"Mass tells spacetime how to curve, spacetime tells mass how to move" ---J. Wheeler

Prediction from General Relativity

Albert Einstein

- GWs are ripples of space-time produced by rapidly accelerating mass distributions.
- Provide info on mass displacement
- Weakly coupled
- Propagate at speed of light
- Two polarizations "+" and "x"
- Emission is quadrupolar at lowest order

Gravitational Wave Sources

Gravitational Waves Affect Spacetime

Spacetime stretches and squeezes as gravitational waves pass

We measures the distortions of spacetime by our detectors.

Black holes inspiralling around each other

1916- : A century of progress

Theoretical developments

Experiments

• 1916: GW prediction (Einstein)

1957: Chapel Hill Conference

• 1963: rotating BH solution (Kerr)

- 1990's: CBC PN expansion (Blanchet, Damour, Deruelle, Iyer, Will, Wiseman, etc.)
- 2000: BBH effective one-body approach (Buonanno, Damour)
- 2006: BBH merger simulation (Baker, Lousto, Pretorius, etc.)

(Bondi, Feynman, Pirani, etc.)

- 1960's: first Weber bars
- 1970: first IFO prototype (Forward)
- 1972: IFO design studies (Weiss)
- 1974: PSRB 1913+16 (Hulse & Taylor)
- 1980's: IFO prototypes (10m-long) (Caltech, Garching, Glasgow, Orsay)
 → End of 1980's: Virgo (Brillet, Giazotto) and LIGO proposals (Drever, Thorne, Weiss)
- 1990's: LIGO and Virgo funded
- 2005-2011: initial IFO « science » » runs
- 2007: LIGO-Virgo MoU
- First half of the 2010's: Upgrades
- First GW detections (2015 BBH, 2017 BNS, 2020 NSBH)
 - → More and more signals since then!

Gravitational Waves hard to find, but known to exist

Binary pulsar and Tests of General Relativity

<u>– Hulse & Taylor (1974)</u>

PSR 1913+16

Credit: Nobelprize.org

Binary Neutron Star system

- separated by 10⁶ miles
- m₁ = 1.4 M_☉(Solar Mass); m₂ = 1.36 M_☉; ε = 0.617

Prediction from general relativity

- spiral in by 3 mm/orbit
- rate of change orbital period

Emission of gravitational waves

10

Gravitational Waves hard to find, but known to exist

Binary pulsar and Tests of General Relativity

Emission of gravitational waves

1993 Nobel Prize in Physics:

"for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation."

Binary Neu

• se

• m

R. Hulse and J. Taylor, orbital decay measurements with J. Weisberg

Prediction from general relativity

- spiral in by 3 mm/orbit
- rate of change orbital period

11

Michelson Interferometers

Layout of "advanced generation" GW interferometer

Noise & Sensitivity

https://gwosc.org/detector_status/day/20240417/

- Noise: any kind of disturbance which pollutes the output signal
- Detecting a GW of frequency *f* if amplitude *h* "larger" than noise at that frequency
- Interferometers are wide-band detectors
 - GW can span a wide frequency range
 - Frequency evolution with time is a key feature of some GW signals
 Compact binary coalescences
 - \rightarrow Compact binary coalescences

•

- Numerous sources of noise
 Fundamental

 → Cannot be avoided; optimize
 design to minimize these
 contributions

 Technical

 → Should not be there, but dominant more often than not!; Continuous struggle
 Environmental

 → Isolate the instrument as much as
 - possible; monitor external noises
- IFO sensitivity characterized by its amplitude spectrum density (ASD, unit: $1/\sqrt{Hz}$) 14

LVK transient GW detections O1~O3 arXiv:2111.03606 [gr-qc]

LVK transient GW detections

All compact binary merger

- The three expected types have been detected
 - **BBH:** Binary black hole
 - **BNS:** Binary neutron star
 - **NSBH:** Neutron star Black hole

Classified by the masses of the compact objects which have merged

- x-axis: primary mass
 → Heavier object
- **y-axis**: secondary mass → Lighter object

LVK transient GW detections

All compact binary merger

- The three expected types have been detected
 - **BBH:** Binary black hole
 - **BNS:** Binary neutron star
 - **NSBH:** Neutron star Black hole

GW150914

- First direct GW detection
- (B)BHs exist
- \rightarrow Now in the bulk of the detected sources

The dawn of gravitational wave astrophysics $M \approx 29 \& 36 M_{\odot}$ GW150914: First Detection $D \approx 1.3$ billion I.y

D ≈ 1.3 billion l.y. (410 Mpc) $\Delta E \approx 3 M_{\odot}$

1.3 Billion Years Ago, 2 black holes merged into 1.

18

The dawn of gravitational wave astrophysics

The Nobel Prize in Physics 2017

Nobelpriset i fysik 2017

Med ena hälften till With one half to:

Rainer Weiss LIGO/VIRGO Collaboration

and with the other half jointly to:

Barry C. Barish LIGO/VIRGO Collaboration

Kip S. Thorne LIGO/VIRGO Collaboration

"för avgörande bidrag till LIGO-detektorn och observationen av gravitationsvågor"

"for decisive contributions to the LIGO detector and the observation of gravitational waves"

Astrophysics from Data

- How massive were the 2 black holes?
- How much were they spinning?
- How far apart were they before they touched?
- How massive is the final black hole?
- How much mass turned into energy?
- How far away was the system?
- How long ago did the merger happen?

Hear Black Holes Collide!

1.4 billion light years away

LVK transient GW detections

All compact binary merger

- The three expected types have been detected
 - BBH:
 - Binary black hole
 - **BNS**: Binary neutron star
 - NSBH:
 - Neutron star black hole

GW170817

- First BNS merger ever
- 3-detector event
- 3 days after GW170814
- BNS are gamma-ray burst progenitors
- \rightarrow Birth of multi-messenger astronomy *with* GWs

Matter is Ejected by BNS

Hear Neutron Stars Collide!

130 million light years away

First BNS-GRB association

- GW170817 & GRB 170817A
 - Fractional difference in speed of gravity and the speed of light is between -3 x 10⁻¹⁵ and 7 x 10⁻¹⁶
- GW170817 & AT 2017gfo
 - Binary neutron star mergers produce kilonova explosions that generate heavy elements

Follow-up Observations

More than 70 groups using 100 instruments looked at the remnant from the merger

This represents about ¼ of the world's astronomers!

Light and Gravitational Waves

- Seeing gamma rays and gravitational waves confirms that gravitational waves travel at the speed of light
- Confirms that neutron star collisions can make gamma ray bursts
- Localizing these events, so many astronomers can observe them with different telescopes
- See signatures of heavy elements, like gold and platinum

Exploiting Multi-Messenger Information

GW detections: the released energy is not always fully converted into GWs → Other types of radiation emitted: possibly electromagnetic waves, neutrinos, etc.

- Astrophysical alerts \rightarrow tailored GW searches
 - Time and source location known; possibly the waveform
- And vice-versa: the LVK network is also releasing its most significant alerts
 - Real-time searches of compact binary coalescences and burst signals
- \rightarrow O2: Agreements signed with ~75 groups 150 instruments, 10 space observatories
- \rightarrow O3: Public alerts on Gamma-ray Coordinates Network (GCN)
 - https://gracedb.ligo.org
- \rightarrow O4 changes:

see later slides

Examples: γ-ray burst, type-II supernova

LVK transient GW detections

GW190521

- BHs exist in pair instability mass gap
- \rightarrow Heaviest source detected to date

GW190814

• Compact objects heavier than NS and lighter than BH do exist

GW190412

• Binary system with large mass ratio

GW200105_162426 GW200115_042309

- First NSBH mergers
- detected in January 2020

A variety of other results

Documented in companion papers of the catalog releases: (Current issue: GWTC-3 – arXiv:2111.03606 [gr-qc])

- Compact object populations and merger rates
 → From one to many detections
- Tests of General Relativity
 → Using BBH mergers
- Cosmology: Hubble constant \rightarrow Independent measurement
 - GW170817-like events
 - or statistical approach
- Upper limits for burst, continuous waves and stochastic background signals

A New Result: We are starting to show the interesting results of our O4 observations

April 5, 2024, the LIGO-Virgo-KAGRA Collaboration announced the discovery of GW230529 from O4a data

Observing Run O4b started April 10th, 2024

Announcement page: <u>https://observing.docs.ligo.org/plan/</u>

Updated 2024-03-14	— O1	— 02	— O3	— O4	— O5
LIGO	80 Мрс	100 Мрс	100-140 Mpc	150 160+ Mpc	240-325 Mpc
Virgo		30 Мрс	40-50 Mpc	40-80 Mpc	See text
KAGRA			0.7 Mpc	1-3 ≃10 Mpc Mpc	25-128 Mpc
G2002127-v24 20	1 İ 015 2016	i i 2017 2018 2	 019 2020 2021 2	022 2023 2024 2025 202 We are here	26 2027 2028 2029 2030

• 1 Mpc (megaparsec) = 3.26 *10⁶ light-year

Why alternating data taking and upgrade periods??

Trading Sensitivity and Observing Time

- Other science
 - Improved SNR
 - New sources?

- O1/O2/O3 - O3 Fit ··· O4 (160 Mpc)

Alternating data taking and upgrade periods should lead to more events in the end₃₃

Public alert for the 1st significant detection candidate from O4b (April 13, 2024)

Assuming the candidate is astrophysical in origin, the probability that the lighter compact object is consistent with a neutron star mass (HasNS) is <1%. [6] Using the masses and spins inferred from the signal, the probability of matter outside the final compact object (HasRemnant) is <1%. [6] Both HasNS and HasRemnant consider the support of several neutron star equations of state. The probability that either of the binary components lies between 3 and 5 solar masses

gcn.nasa.gov/circulars/36075

Date

Via

https://gracedb.ligo.org/superevents/S240413p/view/

We have started to detect the gravitational wave candidates from O4b! All are released publicly a short time after our instruments detect them.

Public alerts in O4

See the details: <u>https://emfollow.docs.ligo.org/userguide</u>

Two types of public alerts based on False Alarm Rate (FAR)

- Significant alerts
 - Compact binary mergers: FAR < 1 / month
 - Bursts: FAR < 1/year
 - Passing automated and human-vetted data quality checks
- Low significance alerts
 - FAR up to 2/day
 - Only automated data quality checks

New early warning alert stream

- Goal: send alert *before* merger time
 - \rightarrow "Negative" latency: up to tens of seconds

Public alert sequence

- Preliminary alerts
 - First fully automated with a latency < 30 s (typically ~20s)
 - Updates as needed, final one < 5 minutes after online search completed
- Significant triggers: rapid response team involved
 - Initial circular or retraction
 - Updates as needed in particular improved parameter estimation

Welcome to the openMMA forum!

https://github.com/scimma/openMMA/wiki

Welcome to the openMMA wiki!

OpenMMA is a community forum to facilitate the exchange of information related to multi-messenger astrophysics (MMA). This forum has no requirements for participation -- anyone interested can join. It replaces and broadens the scope of the OpenLVEM forum created and supported by the LIGO-Virgo-KAGRA Collaboration. The OpenMMA forum is hosted by https://scimma.org/.

Scientific Organizing Committee

During April and May 2024, a scientific organizing committee will be assembled to lead and coordinate activities of the forum.

The scientific organizing committee will also schedule <u>teleconferences</u> and <u>in-person meetings</u> to foster communication between physicists and astronomers interested in multi-messenger astrophysics. Topics to be covered will include updates on the latest scientific results, status reports from observatories and experiments,

openMMA is a community forum to facilitate the exchange of information related to multi-messenger astrophysics (MMA).

- Links to various useful LVK documentation and resources:
 - Observing Run Plans
 - Public Alert User Guide
 - Observatory Status
- Telecons
- Apps Etc.

Summary

• 90 confirmed detections have been made from O1, O2, and O3 observation runs.

- A harvest of scientific results:
 - Individual events: GW150914, GW170817, etc.
 - Transient catalog: GWTC-3
- KAGRA joined the network late O3.
- O4a result started to be shown
- The new O4b observing run has just started.
 - 3 detectors at beginning

→ Crossing fingers to see many more interesting events to be discovered!

• 3G already in discussion