

Introduction to the GW Science/Analysis

Takahiro Sawada
Institute for Cosmic Ray Research (ICRR), The University of Tokyo

Wave Open Data Workshop \#7 (2024)
National Museum of Natural Science, Taichung

Credit: Caltech/MIT/LiGO Lab

Gravitational-Wave (GW)

sources

LVK Dataflow (simplified)
B. P. Abbott et al., 2020 Class. Quantum Grav. 37 055002

GW

LVK Dataflow (simplified)
B. P. Abbott et al., 2020

What are Gravitational Waves (GW) ?

"Mass tells spacetime how to curve, spacetime tells mass how to move"
---J. Wheeler

Prediction from General Relativity

Albert Einstein

- GWs are ripples of space-time produced by rapidly accelerating mass distributions.
- Provide info on mass displacement
- Weakly coupled
- Propagate at speed of light
- Two polarizations " + " and " x "
- Emission is quadrupolar at lowest order

Gravitational Wave Sources

Gravitational Waves Affect Spacetime

Black holes inspiralling around each other

Spacetime stretches and squeezes as gravitational waves pass
We measures the distortions of spacetime by our detectors.

1916- : A century of progress

- 1916: GW prediction (Einstein)

1957: Chapel Hill Conference

- 1963: rotating BH solution (Kerr)
- 1990's: CBC PN expansion (Blanchet, Damour, Deruelle, Iyer, Will, Wiseman, etc.)
- 2000: BBH effective one-body approach (Buonanno, Damour)
- 2006: BBH merger simulation (Baker, Lousto, Pretorius, etc.)
(Bondi, Feynman, Pirani, etc.)
- 1960's: first Weber bars
- 1970: first IFO prototype (Forward)
- 1972: IFO design studies (Weiss)
- 1974: PSRB 1913+16 (Hulse \& Taylor)
- 1980's: IFO prototypes (10 m -long) (Caltech, Garching, Glasgow, Orsay) \rightarrow End of 1980's: Virgo (Brillet, Giazotto) and LIGO proposals (Drever, Thorne, Weiss)
- 1990's: LIGO and Virgo funded
- 2005-2011: initial IFO « science » » runs
- 2007: LIGO-Virgo MoU
- First half of the 2010's: Upgrades
- First GW detections (2015 BBH, 2017 BNS, 2020 NSBH)

More and more signals since then!

Gravitational Waves

hard to find, but known to exist

Binary pulsar and Tests of General Relativity - Hulse \& Taylor (1974)

PSR 1913+16

Credit: Nobelprize.org
Binary Neutron Star system

- separated by 10^{6} miles
- $\mathrm{m}_{1}=1.4 \mathrm{Mo}$ (Solar Mass); $\mathrm{m}_{2}=1.36 \mathrm{M} \odot ; \varepsilon=0.617$

Prediction from general relativity

- spiral in by $3 \mathrm{~mm} /$ orbit
- rate of change orbital period

Emission of gravitational waves

Gravitational Waves

hard to find, but known to exist

Binary pulsar and Tests of General Relativitv
Emission of qravitational waves

- Hulse

PSR 19

Binary Neu

- se

1993 Nobel Prize in Physics:
"for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation."

R. Hulse and J. Taylor, orbital decay measurements with J. Weisberg

Michelson Interferometers

Layout of "advanced generation" GW interferometer

Noise \& Sensitivity

[1397347218-1397433618, state: Observing]

https://gwosc.org/detector status/day/20240417/

- Noise: any kind of disturbance which pollutes the output signal
- Detecting a GW of frequency f if amplitude h "larger" than noise at that frequency
- Interferometers are wide-band detectors
- GW can span a wide frequency range
- Frequency evolution with time is a key feature of some GW signals
\rightarrow Compact binary coalescences
- Numerous sources of noise
- Fundamental
\rightarrow Cannot be avoided; optimize design to minimize these contributions
- Technical
\rightarrow Should not be there, but dominant more often than not!; Continuous struggle
- Environmental
\rightarrow Isolate the instrument as much as possible; monitor external noises
- IFO sensitivity characterized by its amplitude spectrum density (ASD, unit: $1 / \sqrt{ } \mathrm{Hz}$)

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

LVK transient GW detections

All compact binary merger

- The three expected types have been detected
- BBH: Binary black hole
- BNS: Binary neutron star
- NSBH: Neutron star - Black hole

Classified by the masses of the compact objects which have merged

- x-axis: primary mass
\rightarrow Heavier object
- y-axis: secondary mass
\rightarrow Lighter object

LVK transient GW detections

All compact binary merger

- The three expected types have been detected
- BBH: Binary black hole
- BNS: Binary neutron star
- NSBH: Neutron star - Black hole

GW150914

- First direct GW detection
- (B)BHs exist
\rightarrow Now in the bulk of the detected sources

The dawn of gravitational wave astrophysics GW150914: First Detection
 $\mathrm{M} \approx 29$ \& 36 M 。
 D ≈ 1.3 billion I.y. (410 Mpc)
 $\Delta \mathrm{E} \approx 3 \mathrm{M}$ 。

1.3 Billion Years Ago, 2 black holes merged into 1.

The dawn of gravitational wave astrophysics

The Nobel Prize in Physics 2017

Nobelpriset i fysik 2017

Rainer Weiss LIGONIRGO Collaboration
och med den andra hälften gemensamt till and with the other half jointly to:

Barry C. Barish LIGONIRGO Collaboration

Kip S. Thorne LIGONIRGO Collaboration
"för avgörande bidrag till LIGO-detektorn och observationen av gravitationsvàgor" "for decisive contributions to the LIGO detector and the observation of gravitational waves"

Astrophysics from Data

- How massive were the 2 black holes?
- How much were they spinning?
- How far apart were they before they touched?
- How massive is the final black hole?
- How much mass turned into energy?
- How far away was the system?
- How long ago did the merger happen?
-
-
-

Hear Black Holes Collide!

1.4 billion light years away

LVK transient GW detections

All compact binary merger

- The three expected types have been detected
- BBH:

Binary black hole

- BNS:

Binary neutron star

- NSBH:

Neutron star - black hole

GW170817

- First BNS merger ever
- 3-detector event
- 3 days after GW170814
- BNS are gamma-ray burst progenitors
\rightarrow Birth of multi-messenger astronomy with GWs

Matter is Ejected by BNS

Hear Neutron Stars Collide!

130 million light years away

First BNS-GRB association

- GW170817 \& GRB 170817A
- Fractional difference in speed of gravity and the speed of light is between -3 $\times 10^{-15}$ and 7×10^{-16}
- GW170817 \& AT 2017gfo
- Binary neutron star mergers produce kilonova explosions that generate heavy elements

Follow-up Observations

More than 70 groups using 100 instruments looked at the remnant from the merger

Light and Gravitational Waves

- Seeing gamma rays and gravitational waves confirms that gravitational waves travel at the speed of light
- Confirms that neutron star collisions can make gamma ray bursts
- Localizing these events, so many astronomers can observe them with different telescopes
- See signatures of heavy elements, like gold and platinum

Exploiting Multi-Messenger Information

GW detections: the released energy is not always fully converted into GWs
\rightarrow Other types of radiation emitted: possibly electromagnetic waves, neutrinos, etc.

- Astrophysical alerts \rightarrow tailored GW searches
- Time and source location known; possibly the waveform
$\}$ Examples: γ-ray burst, $\begin{aligned} & \text { type-II supernova }\end{aligned}$
- And vice-versa: the LVK network is also releasing its most significant alerts
- Real-time searches of compact binary coalescences and burst signals
\rightarrow O2: Agreements signed with ~ 75 groups - 150 instruments, 10 space observatories
\rightarrow O3: Public alerts on Gamma-ray Coordinates Network (GCN)
https: / / gracedb.ligo.org
$\rightarrow \mathrm{O} 4$ changes:
see later slides

LVK transient GW detections

GW190521

- BHs exist in pair instability mass gap
- \rightarrow Heaviest source detected to date

GW190814

- Compact objects heavier than NS and lighter than BH do exist

GW190412

- Binary system with large mass ratio

GW200105_162426
GW200115_042309

- First NSBH mergers
- detected in January 2020

A variety of other results

Documented in companion papers of the catalog releases:
(Current issue: GWTC-3 - arXiv:2111.03606 [gr-qc])

- Compact object populations and merger rates \rightarrow From one to many detections
- Tests of General Relativity
\rightarrow Using BBH mergers
- Cosmology: Hubble constant
\rightarrow Independent measurement
- GW170817-like events or statistical approach
- Upper limits for burst, continuous waves and stochastic background signals

A New Result: We are starting to show the interesting results of our O4 observations

April 5, 2024, the LIGO-Virgo-KAGRA Collaboration announced the discovery of GW230529 from O4a data

most likely a merger between a Neutron Star \& Black Hole (NSBH)

~ 650 million light years away

Detectors Offline OR not operational (H) L K On Online BUT not used for analysis* - Online AND used for analysis

```
Primary object in lower mass gap further supports that this region is not empty
```

Mass $\left(M_{\circ}\right)$	2	3	4	5	6

FILLING THE MASS \longleftrightarrow GAP

with observations of compact binaries from gravitational waves

almost certainly
a neutron star
larger than the expected range for neutron stars and smaller than the expected range for 31 black holes

Observing Run O4b started April 10 ${ }^{\text {th }}, 2024$

Announcement page: https:/ / observing.docs.ligo.org/plan/

Why alternating data taking and upgrade periods??

Trading Sensitivity and Observing Time

- Crude extrapolation to O 4 and O 5 assuming BNS range of second most sensitive detector and similar duty cycle and performance to O3.
- Other science
- Improved SNR
- New sources?
- O1/O2/O3 - - O3 Fit .. O4 (160 Mpc) - - O5 (300 Mpc)

Alternating data taking and upgrade periods should lead to more events in the end e_{33}
$01+02+03=90,04 a^{*}=81,04 b^{*}=1$, Total $=172$ and $1600+$ low significance alerts from O4a/b

- Improved binary merger detection rate
- Improved public alerts
- Latency
- Localization
- Classification

Public alert for the $1^{\text {st }}$ significant detection candidate from O4b (April 13, 2024)

```
Nas.% General Coordinates Network MENU
    Back
        Text JSON Cit
```


GCN Circular 36075

```
IGO/Virgo/KAGRA S240413p: Identification of a GW compact binary merger candidate
Date
2024-04-13T03:13:04Z (2 days ag
From
rein.yongxiang.yang@gmail.com
Web form
The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration report:
We identified the compact binary merger candidate S240413p during real-time processing of data rom LIGO Hanford Observatory (H1), LIGO Livingston Observatory (L1), and Virgo Observatory (V1) 7.852). The candidate was found by the CWB
S24043p is an ever of interest bacase its false alarn rate,
S240413p is an event of interest because its false alarm rate, as estimated by the online
analysis, is \(3.2 \mathrm{e}-10 \mathrm{~Hz}\), or about one in 1 e 2 years. The event's properties can be found at this
https://gracedb.ligo.org/superevents/S240413p
fter parameter estimation by RapidPE-RIFT [5], the classification of the GW signal, in order of escending probability, is BBH (98\%), Terrestrial (2\%), NSBH ( \(<1 \%\) ), or BNS ( \(<1 \%\) ).
Assuming the candidate is astrophysical in origin, the probability that the lighter compact
inferred from the signal, the probability of matter outside the final compact object (HasRemnant) inferred from the signal, the probability of matter outside the final compact object (HasRemnant
is \(<1 \%\). [6] Both HasNS and HasRemnant consider the support of several neutron star equations of state. The probability that either of the binary components lies between 3 and 5 solar masses
https: / / gcn.nasa.gov / circulars / 36075
```


Public alerts in O 4

See the details: https:/ / emfollow.docs.ligo.org/userguide
Two types of public alerts based on False Alarm Rate (FAR)

- Significant alerts
- Compact binary mergers: $\mathrm{FAR}<1$ / month
- Bursts: FAR < 1/year
- Passing automated and human-vetted data quality checks
- Low significance alerts
- FAR up to 2/day
- Only automated data quality checks

New early warning alert stream

- Goal: send alert before merger time
\rightarrow "Negative" latency: up to tens of seconds

Public alert sequence

- Preliminary alerts
- First fully automated with a latency <30 s (typically ~ 20 s)
- Updates as needed, final one <5 minutes after online search completed
- Significant triggers: rapid response team involved
- Initial circular or retraction
- Updates as needed - in particular improved parameter estimation

Welcome to the openMMA forum!

https:/ / github.com/scimma/openMMA/wiki

openMMA is a community forum to facilitate the exchange of information related to multi-messenger astrophysics (MMA).

Home

Donald Petravick edited this page 5 days ago $\cdot 7$ revisions

Welcome to the openMMA wiki!

Scientific Organizing Committee

During April and May 2024, a scientific organizing committee will be assembled to lead and coordinate activities of the forum.

Summary

- 90 confirmed detections have been made from O1, O2, and O3 observation runs.
- A harvest of scientific results:
- Individual events: GW150914, GW170817, etc.
- Transient catalog: GWTC-3
- KAGRA joined the network late O3.
- O4a result started to be shown
- The new O4b observing run has just started.
- 3 detectors at beginning
\rightarrow Crossing fingers to see many more interesting events to be discovered!
- 3G already in discussion

