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ABSTRACT

We detail the population properties of merging compact objects using 158 mergers from the cumula-

tive Gravitational-Wave Transient Catalog 4.0, which includes three types of binary mergers: binary

neutron star, neutron star–black hole binary, and binary black hole mergers. We resolve multiple

over- and under-densities in the black hole mass distribution: features persist at primary masses of

10M⊙ and 35M⊙ with a possible third feature at ∼20M⊙. These are departures from an otherwise

power-law-like continuum that steepens above 35M⊙. Binary black holes with primary masses near

10M⊙ are more likely to have less massive secondaries, with a mass ratio distribution peaking at

q = 0.74+0.13
−0.13, potentially a signature of stable mass transfer during binary evolution. Black hole spins

are inferred to be non-extremal, with 90% of black holes having χ < 0.57, and preferentially aligned

with binary orbits, implying many merging binaries form in isolation. However, we find a significant

fraction, 0.24–0.42, of binaries have negative effective inspiral spins, suggesting many could be formed

dynamically in gas-free environments. We find evidence for correlation between effective inspiral spin

and mass ratio, though it is unclear if this is driven by variation in the mode of the distribution or

the width. The binary black hole merger rate increases with redshift as (1 + z)κ with κ = 3.2+0.94
−1.00,

consistent with the cosmic star formation density. While there is no evidence of the mass spectrum

evolving with redshift, the distribution of effective inspiral spin is found to broaden as redshift increases

out to z ≈ 1. We infer the local merger rates (i.e., at redshift z = 0) to be 7.6–250Gpc−3 yr−1 for

binary neutron stars, 9.1–84Gpc−3 yr−1 for neutron star–black hole binaries, and 14–26Gpc−3 yr−1

for binary black holes; all values reflect central 90% credible intervals.

1. INTRODUCTION

Gravitational waves (GWs) have revolutionized the

study of compact objects and their populations (Ab-

bott et al. 2016, 2019a, 2021a, 2023a), with observa-

tions now extending beyond redshift z = 1. Searches for

GWs from compact binary mergers have robustly quan-

tifiable selection effects, which enable detailed inference

of population properties with few sources of potential

bias (Mandel et al. 2019; Essick & Fishbach 2024). By

studying the growing catalog of compact binary merg-

ers, we aim to uncover both where these systems form,

and how they evolve toward merger. For example, are

they formed from stars that are gravitationally bound

at birth, possibly as the products of chemically homo-

geneous evolution (Mandel & de Mink 2016; Marchant

et al. 2016; de Mink & Mandel 2016), or brought close

enough together for GW-driven inspiral through phases

of common envelope evolution (Bethe & Brown 1998;

Portegies Zwart & Yungelson 1998; Belczynski et al.

2001; Dominik et al. 2015) or stable mass transfer (Hur-

ley et al. 2002; Neijssel et al. 2019; van Son et al. 2022b)?

Could binaries be assisted in assembly and hardening in

the gaseous disks of active galactic nuclei (AGN) (McK-

ernan et al. 2012; Bartos et al. 2017; Stone et al. 2017;

Fragione et al. 2019) or through dynamical interactions

in dense stellar environments (Kulkarni et al. 1993; Sig-

urdsson & Hernquist 1993; Portegies Zwart & McMillan

2000; Ziosi et al. 2014)?

From the first three observing runs of the LIGO–

Virgo–KAGRA Collaboration (LVK), we established

that stellar-mass black holes (BHs) in merging bina-

ries have a broad distribution of masses, with peaks

at primary masses of ∼10M⊙ and ∼35M⊙, that falls

off steeply above ∼45M⊙ (Abbott et al. 2023a). De-

spite the steep decline, the rate of mergers in the ex-

pected pair-instability supernova (PISN) gap, predicted

to begin at ∼45 – 50M⊙ (Woosley 2017; Farmer et al.

2019), was found to be non-zero (Abbott et al. 2020c,d).

Likewise, the rate of mergers in the purported lower

mass gap between ∼3 – 5M⊙ (Bailyn et al. 1998; Ozel

et al. 2010; Farr et al. 2011) was found to be small but

non-zero (Abbott et al. 2020e; Abac et al. 2024). The

neutron star (NS) mass distribution does not require

a peak in the distribution at ∼1.33M⊙, as is seen in
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the galactic binary neutron star (BNS) population (Özel

& Freire 2016; Farrow et al. 2019). The binary black

hole (BBH) merger rate was found to definitively in-

crease with redshift. Spins were found to be small in

magnitude, with a non-zero fraction of systems with spin

components anti-aligned with the binary orbit.

Advanced LIGO (Aasi et al. 2015), Advanced

Virgo (Acernese et al. 2015), and KAGRA (Akutsu

et al. 2021) began their fourth observing run (O4)

on 2023 May 24 at 15:00 UTC. The first part of the

fourth observing run (O4a) ended on 2024 January

16 at 16:00 UTC. The accompanying Gravitational-

Wave Transient Catalog (GWTC) version 4.0 (here-

after, GWTC-4.0) (Abac et al. 2025a,b,c) contains those

events observed in previous observing runs, O1 (Abbott

et al. 2016), O2 (Abbott et al. 2019b), and O3 (Abbott

et al. 2021b, 2023b, 2024), together with the newest ob-

servations from O4a. We use the updated catalog to

infer the population properties of BNS, neutron star–

black hole binary (NSBH), and BBH systems in the local

Universe.

GWTC-3.0 included 76 candidates with false alarm

rate (FAR) < 1 yr−1: 69 BBHs, 4 NSBHs, 2 BNSs, and

one event GW190814 211039 (henceforth, GW190814)

that is either a NSBH or BBH. Abac et al. (2025c) iden-

tifies 128 candidate signals in O4a with a probability of

astrophysical compact binary origin of pastro ≥ 0.5, of

which 85 (84 BBHs and 1 NSBH) have FAR < 1 yr−1.

Selecting BBHs from the catalog using this threshold

yields a cumulative BBH count of 153. With fewer

signal candidates from binaries containing at least one

NS, maintaining a comparable contamination fraction

to that of BBH mergers (∼5%) requires a more conser-

vative threshold (see Section 3 for more details). We

adopt the same threshold used for similar analyses of

GWTC-3.0, FAR < 0.25 yr−1, for analyses that include

NS-containing populations (Abbott et al. 2023a). This

yields two NSBH candidates from O3, and one new

candidate, GW230529 181500 (henceforth, GW230529),

detected above this threshold in designated observing

time during O4a (Abac et al. 2024). Section 3 provides

further details and discussion of threshold choices and

candidate inclusion. Adopting the more conservative

FAR < 0.25 yr−1 threshold reduces the O4a BBH count

to 76, resulting in a catalog of 2 BNSs, 3 NSBHs, and

138 BBHs for analyses that include BNS and NSBH pop-

ulations in this work.

The remainder of the paper is structured as follows.

In Section 2 we provide a brief description of our infer-

ence techniques (with remaining details in Appendix A)

and the classes of models used (with full descriptions

of the models in Appendices B and C, and how they

were chosen in Appendix D). Section 3 describes our

dataset and sample selection, including brief descrip-

tions of search techniques, threshold choices, and wave-

form models used. In Section 4 we present measure-

ments of the complete compact-binary mass spectrum

(NSs and BHs). In Section 5, we study the proper-

ties of the NS-containing population in detail, and in

Section 6 focus on the ensemble properties of BBHs,

including their masses, spins, redshifts, and associated

correlations. Section 7 concludes by summarizing the

key results of this work. Associated data releases pro-

vide analysis results and figure generation scripts (LIGO

Scientific Collaboration et al. 2025) and data products

for estimating sensitivity (Essick 2025a,b).

2. METHODS

We determine the population properties of merging

compact binaries using hierarchical Bayesian inference

as has been done in previous studies (Abbott et al.

2019a, 2021a, 2023a). Our aim here is to estimate the

posterior distribution p(Λ|d) on population-level model

parameters Λ (also referred to as hyperparameters) in

light of new data d representing the observed GW data

from individual merger events. These model-dependent

hyperparameters describe the population-level proper-

ties of GW source parameters θ (masses, spins, redshifts,

etc.). According to Bayes’ theorem,

p(Λ|d) = L(d|Λ)π(Λ)

p(d)
, (1)

where π(Λ) is the prior probability distribution and

L(d|Λ) is the likelihood—the probability of obtaining

the data d given some Λ. The Bayesian evidence p(d)

ensures that p(Λ|d) is properly normalized.

In order to use Bayes’ theorem to infer the posterior

probability distribution of hyperparameters, we need the

likelihood of obtaining the observed catalog of events

given a set of hyperparameters and a population model.

Because GW detectors are not equally sensitive to dif-

ferent astrophysical sources, the likelihood must account

for selection biases. Assuming (i) a Poisson process gen-

erates realizations from the source population of which

a subset is detected, and (ii) the observed data associ-

ated are statistically independent (e.g., no overlapping

signals), the likelihood is given by (Loredo 2004; Farr

et al. 2015; Mandel et al. 2019; Thrane & Talbot 2019;

Vitale et al. 2020)

L({di}, Ndet|Λ) ∝

N(Λ)Ndete−Nexp(Λ)
Ndet∏

i=1

∫
dθL(di|θ)π(θ|Λ) , (2)
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where N(Λ) is the total number of mergers (detected

and undetected) incident on the detectors within the

observing period, Ndet is the number of detections, di
are the strain data corresponding to the ith detection,

and L(di|θ) is the likelihood of the data di given the GW

source parameters θ (Abac et al. 2025b). The expected

number of detections is Nexp(Λ) = N ξ(Λ), with ξ(Λ)

being the expected fraction of the population parame-

terized by Λ that is detectable. Formally, we impose a

detection criterion on the data, e.g., a FAR threshold,

by the selection function x(d) acting on a data segment

d. A GW event is detectable in d if x(d) > xthr, where

xthr is the chosen detectability threshold. Then,

ξ(Λ) =

∫

x(d)>xthr

dddθ p(d|θ)π(θ|Λ). (3)

In Equation (3), the domain of integration is over all

data d which surpasses the detection threshold xthr (Es-

sick et al. 2025). When a prior π(N) ∝ 1/N is assumed,

Equation (2) can be analytically marginalized over N

leaving the rate-marginalized hierarchical likelihood

L({d}, Ndet|Λ) ∝
Ndet∏

i=1

∫
dθL(di|θ)π(θ|Λ)

ξ(Λ)
. (4)

This likelihood may also be obtained by marginaliz-

ing over a prior on the expected number of detections,

Nexp = Nξ(Λ), rather than on N (Essick & Fishbach

2024).

Having described the hierarchical likelihood in Equa-

tion (2) and Equation (4) we have one of the two in-

gredients necessary for sampling the posterior in Equa-

tion (1). We also must choose a prior over the space

of hyperparameters. This depends on the population

model, which we describe in more detail below. We

specify the priors for each model in Appendix B.

Equation (2) is the exact form of the likelihood. How-

ever, calculating ξ(Λ) and integrating over θ is analyt-

ically intractable. Therefore, we approximate the like-

lihood via Monte Carlo reweighting using importance

sampling. Our Monte Carlo approximation for the likeli-

hood carries some uncertainty and may not be converged

appropriately for some hyperparameter values. There-

fore, we discard hyperparameters whose likelihood un-

certainty exceeds a chosen threshold a posteriori (Talbot

& Golomb 2023). For more description of this problem

and our approach for mitigating it, see Appendix A.

The Bayesian inference problem is stated here in terms

of the population probability density π(θ|Λ) and the

overall number of merging binaries N . This can be con-

verted to another astrophysical quantity of interest, the

comoving source-frame merger rate density

R(z) =
dN

dVcdts
(z) =

dN

dtddz

(
dVc

dz

1

1 + z

)−1

, (5)

where ts is the time measured in the comoving source

frame, td is the time at the detector (redshift z = 0) and

dVc/dz is the differential comoving volume with respect

to redshift z (see e.g., Essick et al. 2025). The comov-

ing source frame merger rate represents the number of

mergers in a unit of comoving volume and source-frame

time, conventionally measured in units Gpc−3 yr−1.

To construct models for the population distribution

of astrophysical GW sources, we take one of two ap-

proaches. The first approach—which we call the strongly

modeled approach (sometimes called the parametric

approach)—assumes a specific functional form π(θ|Λ)

for the astrophysical distribution a priori, e.g., a Gaus-

sian distribution or a power law. A second approach—

which we call the weakly modeled approach (elsewhere

data-driven, flexible, or nonparametric)—attempts to

make minimal a priori assumptions about the under-

lying astrophysical population, e.g., a spline model. We

elaborate on each approach in the following two subsec-

tions, and provide details for the models presented in

this work falling in each category.

2.1. Strongly Modeled Approach

The strongly modeled approach assumes that the un-

derlying astrophysical distribution of binary properties

can be described by a fixed functional form and associ-

ated hyperparameters. Consequently, this approach has

far fewer hyperparameters as compared to the weakly

modeled approach. The parameterization may be moti-

vated by theoretical expectations about the astrophysi-

cal population and/or could be selected because it seems

to fit the observed data well. This has the benefit of be-

ing simple and interpretable, as hyperparameters can

be designed to correspond directly to physical features

of interest. Examples of such features are a distribu-

tion’s minimum or maximum, the location parameter for

an overdensity corresponding to e.g., pulsational pair-

instability supernovae, etc. On the other hand, these

approaches can be overly restrictive: features present

in the true astrophysical distribution that are not cap-

tured by our parameterization cannot be easily discov-

ered. Additionally, the inferred parameters can be bi-

ased due to a mis-specified model (e.g., Romero-Shaw

et al. 2022).

The parameterized models selected for this work are

generally simple extensions to those employed in the pre-

vious LVK astrophysical population studies paper from
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Table 1. Summary of Models

Model Type Model Name Description

Strongly Modeled: FullPop-4.0 Models the mass spectrum of all CBCs simultaneously with

Mass appropriate power-law and peak components. Also allows for a

gap between the most massive NS and the least massive BH.

Broken Power Law + 2 Peaks ⋆ The primary mass distribution has a broken power law

continuum between a minimum and maximum mass, plus

two Gaussian peaks around ∼10M⊙ and ∼35M⊙. The

distribution of mass ratio q is a power law between

some minimum value and 1.

Extended Broken Power The mass-ratio power-law is allowed to differ between

Law + 2 Peaks primary masses in the continuum and in the 35M⊙ peak.

Strongly Modeled: Gaussian Component Spins ⋆ The spin magnitude population is a Gaussian truncated over

Component Spin the physical range χ ∈ [0, 1). The distribution of cosine spin tilts

relative to the orbital angular momentum includes an isotropic

(i.e., uniform) component and a truncated Gaussian component.

Strongly Modeled: Gaussian Effective Spins The joint χeff–χp effective spin distribution is a bivariate

Effective Spin Gaussian allowing for correlations.

Skew-normal Effective Spin The χeff marginal effective spin distribution is skew normal,

truncated to [−1, 1].

Strongly Modeled: Power Law Redshift ⋆ The merger rate per unit comoving volume and source-frame

Redshift time evolves with redshift z as a power law i.e., ∝ (1 + z)κ.

Strongly Modeled: Copula Truncated Gaussian distributions are assumed for χeff and

Correlations χp. A Frank copula density function correlates two variables.

Separate copula models correlate (q, χeff), (z, χeff), (m1, χeff),

and (m1, z).

Linear A truncated Gaussian distribution is assumed for χeff with

the mean and width linearly dependent on either q or z.

Spline A truncated Gaussian distribution is assumed for χeff with

the mean and width dependent on either q or z. This

dependence is flexibly modeled with a cubic spline.

Weakly Modeled: B-Spline Fits the astrophysical distribution as a separable joint

All Parameters distribution with one-dimensional basis splines. Large numbers

of basis functions allow for flexibility, with difference-based

priors imposing smooth evolution a priori.

Binned Gaussian Process Assumes a fixed binning scheme and infers the event rate under

the assumption of a constant rate within each bin, and a

Gaussian process prior imposing smooth covariance across bins.

Strongly modeled and weakly modeled approaches used to study the mass, spin, and redshift distributions of merging compact
binaries. We provide a brief description of each model here, with detailed descriptions in Appendix B and Appendix C. Models
marked with a ⋆ are treated as defaults and are used whenever no model is explicitly indicated for a certain parameter. All
strongly modeled approaches mentioned below target BBHs, with the exception of FullPop-4.0 that is used to model the entire
CBC population.
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GWTC-3.0 (Abbott et al. 2023a). Updates to these

models are motivated by features that have emerged due

to new data in GWTC-4.0 and improved interpretations

since GWTC-3.0.

Table 1 lists the strongly modeled approaches used in

this paper, with details in Appendix B. We also describe

the parameterizations and priors for these models in Ap-

pendix B, and our procedure for selecting the default

strongly modeled approach in Appendix D. For most

models, we assume that masses, spins, and redshifts are

all uncorrelated. We also study a selection of pairwise

correlations between parameters in Section 6.5.

2.2. Weakly Modeled Approach

The weakly modeled approach adopts models that de-

liberately make few assumptions about the nature of

the underlying compact-binary population. Such ap-

proaches typically require a larger number of hyperpa-

rameters in order to effectively approximate a wide va-

riety of distributions. The philosophy of a weakly mod-

eled approach is to discover unexpected features in the

population, which may be unforeseen or difficult to pa-

rameterize. However, they could yield results that are

more difficult to interpret astrophysically. The differ-

ence between the strongly modeled and weakly mod-

eled approaches can be understood in terms of the bias–

variance tradeoff; the former has low variance with a

risk of bias, whereas the latter has low bias but elevated

variance.

Weakly modeled approaches must make some assump-

tions, however, and must be designed with different

features in mind. For example, different approaches

have sensitivity to astrophysical correlations, narrow

structures, or gaps in the population. While a unified

Bayesian approach to capture generic population fea-

tures is still an open problem (Mandel et al. 2017; Tiwari

2021; Rinaldi & Del Pozzo 2021; Edelman et al. 2023;

Golomb & Talbot 2023; Payne & Thrane 2023; Toubiana

et al. 2023; Callister & Farr 2024; Ray et al. 2023a;

Farah et al. 2025b; Heinzel et al. 2025a), we use two

different weakly modeled approaches—B-Spline and

Binned Gaussian Process (BGP)—to verify results

from our strongly modeled approaches (see Table 1). We

describe two additional weakly modeled approaches—

Autoregressive Process (AR) and Flexible Mix-

tures (FM)—in Appendix C, and compare these ap-

proaches in Appendix D.4.

3. DATASET

3.1. Data Collection Duration

Analyses presented in this paper use selected data

products from GWTC-4.0 (Abac et al. 2025a,b,c,d).

This section and Section 3.2 provide details on the

selection criteria for events analyzed for this paper.

GWTC-4.0 includes GW candidates and data from O1

through the end of O4a, as well as a GW candidate and

data collected during an engineering run (ER) (Abbott

et al. 2020a) directly preceding the start of O4a. ERs

are periods dedicated to final commissioning and con-

figuration of the instruments prior to an observing run;

the instruments may be in locked and low-noise con-

figurations, but are not generally intended to perform

astrophysical observations. The ER data included in

GWTC-4.0 is deliberately chosen to contain a few days

of data around a GW event potentially originating from

a NSBH binary merger, GW230518 125908 (henceforth,

GW230518). The analyses and results quoted in this

paper exclude data obtained during the ER; the inclu-

sion of this data would introduce human selection effects

that cannot be easily incorporated into ξ(Λ), and hence

may bias our inferences.

3.2. Event Selection Criteria

3.2.1. Significance Thresholds

To ensure that the dataset we use in this paper has

reduced contamination from noise events, we adopt a

significance threshold of FAR < 1 yr−1 in at least one

GW search pipeline, which is consistent with the cri-

terion adopted in Abbott et al. (2023a). Based on the

FAR threshold, a total of 161 CBC candidates have been

detected from O1 through O4a (Abbott et al. 2019b,

2021b, 2024, 2023b) by the GW search pipelines (Abac

et al. 2025c), of which 85 were from O4a. This is a

noteworthy increase in the number of observations re-

ported in Abbott et al. (2023b), which contained 76

events meeting the FAR < 1 yr−1 threshold. With this

FAR threshold and assuming noise signals are produced

independently, we expect
∑

k FAR× Tk ≃ 6.7 contami-

nant noise events in our results, where Tk is an estimate

of the time examined by the kth search. The list of GW

events included in the analyses of this paper contains

GW231123 135430 (henceforth, GW231123), which has

high probability for being the most massive BBH with

FAR < 1 yr−1 detected to date by the GWs with both

component masses possibly in the upper mass gap (Abac

et al. 2025e; Woosley 2017; Mapelli et al. 2020; Farmer

et al. 2019, 2020; Woosley & Heger 2021; Hendriks et al.

2023). Not all events reported in the GWTCs pa-

pers (Abbott et al. 2019b, 2021b, 2024, 2023b; Abac

et al. 2025c) are included in our analyses, as previous

GWTC papers thresholded event candidates using pastro
≥ 0.5 or FAR < 2 yr−1, whereas the analyses presented

in our paper select events with a significance of FAR <

1 yr−1. Here, pastro is the estimate of the probability of
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astrophysical origin of the event candidates (Abac et al.

2025b,c). In addition, GW230630 070659 is excluded

from the analyses and the number of events reported in

this paper, due to concerns of the data quality around

the time of this event (Abac et al. 2025c).

3.2.2. Mass and Significance Thresholds for Events with
NSs

To distinguish NS-containing events from events con-

taining only BHs, we first threshold events by checking

whether the 1% lower limit on the component mass is

smaller or larger than 3M⊙. As far fewer GW candi-

dates with NSs have been observed compared to BBHs,

this paper adopts a stricter FAR threshold of < 0.25

yr−1 in at least one GW search pipeline for GW can-

didates with NSs to ensure a purer sample, as done

in Abbott et al. (2023a). This FAR threshold ex-

cludes GW190917 114630 and GW190426 152155 (Ab-

bott et al. 2024), which are consistent with originat-

ing from NSBHs but have FARs of > 0.25 yr−1. In

addition, we exclude certain events whose category is

ambiguous from dedicated BBH and NSBH analyses.

Specifically, we exclude GW190814 as its source’s sec-

ondary mass is lower than the component masses of

events classified as BBHs but higher than the inferred

NS mass range, leaving its classification ambiguous (Ab-

bott et al. 2020e; Essick et al. 2022; Abbott et al.

2023a). This event is included in Section 4 which

considers binary-merger populations across all masses.

Hence, the only NS-containing event detected in O4a

considered in this paper is GW230529 (Abac et al.

2024), in addition to the previously reported NSBHs,

GW200105 162426 and GW200115 042309 (henceforth,

GW200105 and GW200115, respectively). The results

are presented in Section 5.

3.2.3. Exclusion of Non-LVK Catalog Events

In addition to the catalog of event candidates and

its analyses conducted by the LVK, independent teams

have analyzed the public GW data from O1 through

second half of the third observing run (O3b) using

alternative algorithms and have identified additional

GW binary-merger event candidates (Venumadhav et al.

2019, 2020; Olsen et al. 2022; Mehta et al. 2025; Wadekar

et al. 2023; Zackay et al. 2019; Nitz et al. 2019, 2020,

2021, 2023; Kumar & Dent 2024; Mishra et al. 2025;

Koloniari et al. 2025). We do not include these addi-

tional events in our analyses here due to subtleties with

consistently combining sensitivity estimates from these

independent catalogs.

3.3. Sensitivity of GW Searches

A key ingredient in the estimation of population level

properties is the sensitivity of our GW searches ξ(Λ).

The following four search pipelines analyzed detector

data for real GW signals as well as simulated GW sig-

nals, called injections: GstLAL (Messick et al. 2017;

Sachdev et al. 2019; Hanna et al. 2020; Cannon et al.

2020; Ewing et al. 2024; Tsukada et al. 2023; Sakon

et al. 2024; Ray et al. 2023b; Joshi et al. 2025a,b),

MBTA (Adams et al. 2016; Aubin et al. 2021; Andres

et al. 2022; Alléné et al. 2025), PyCBC (Usman et al.

2016; Nitz et al. 2017, 2018; Dal Canton et al. 2021), and

the cWB analysis (Klimenko et al. 2005, 2008, 2016;

Tiwari et al. 2016; Drago et al. 2020; Klimenko 2022;

Mishra et al. 2021, 2022, 2025). Injections were added

to data at an artificially higher rate than observed GW

signals, and were used to quantify the pipelines’ sensi-

tivities to GW signals (Essick et al. 2025; Abac et al.

2025b). The distribution of injections was chosen to en-

able efficient and accurate resampling to a wide range

of astrophysically plausible populations (Essick et al.

2025). For all the analyses in this paper, the detec-

tion efficiency ξ(Λ) is estimated using these injections

through a Monte Carlo integral (Abac et al. 2025b; Ti-

wari 2018; Farr 2019).

3.4. Source Properties

Parameter estimation (PE) pipelines use Bayesian in-

ference to estimate the properties of GW events (Abac

et al. 2025b). The hierarchical Bayesian inference frame-

work described in Section 2 requires as input PE sam-

ples from individual events. For events detected in O4a,

we use samples drawn from the posterior distribution

using the NRSur7dq4 (Varma et al. 2019) waveform

approximant if available. If these are not available e.g.,

because the signal duration is too long to be analyzed

by NRSur7dq4, we instead use a mixture of sam-

ples from the IMRPhenomXPHM SpinTaylor (Prat-

ten et al. 2021; Colleoni et al. 2025) and SEOB-

NRv5PHM (Ramos-Buades et al. 2023; Pompili et al.

2023) approximants. These are referred to as Mixed

samples in the PE data products. More details about

various choices made in the PE procedure can be found

in Section 5 of Abac et al. (2025b) and Section 3 of Abac

et al. (2025c).

For all events detected before O4a, we use the Mixed

samples reported in the GWTC-3.0 (Abbott et al.

2023b) and GWTC-2.1 (Abbott et al. 2024) data re-

leases. One exception is the BNS merger GW170817,

for which we use samples obtained with the IMR-

PhenomPv2 NRTidal waveform approximant (Diet-

rich et al. 2019) and a prior allowing for large spin mag-

nitudes (Abbott et al. 2019c). We also reweight these
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samples to a distance prior that is uniform in comoving

volume and source-frame time following the prescription

in Appendix C of Abbott et al. (2021b).

While this work was in its final stages, a normalization

error was discovered in the noise-weighted inner product

used in the PE likelihood function (Abac et al. 2025b;

Talbot et al. 2025b). While there is a version of the

PE samples that account for the correct likelihood via

a reweighting prescription (Abac et al. 2025b; Talbot

et al. 2025b), we do not use these samples in this work.

Further, for candidates detected during the first three

observing runs, we discovered that incorrect priors were

used when marginalizing over the uncertainty in the cal-

ibration of the LIGO detectors (Abac et al. 2025b). Pre-

liminary re-analysis indicates that for each candidate the

impact of this error in marginalization is small, and we

expect the impact on our population analyses to be neg-

ligible compared to other sources of systematic error.

4. BINARY MERGER POPULATION ACROSS ALL

MASSES

We begin our analysis of the astrophysical distribu-

tion of merging compact binaries with a joint analy-

sis of all events discussed in Section 3—BNSs, NSBHs,

and BBHs—without distinguishing between these dif-

ferent source classes. This allows for a broad look at

the complete population, self-consistent measurements

of the merger rates in each binary source class, and an

analysis of the population at the transition between NSs

and BHs. As mentioned in Section 3, we adopt a uni-

form detection threshold of FAR < 0.25 yr−1 to ensure a

high catalog purity of NS systems, where we have fewer

detections and so are more sensitive to non-astrophysical

false-alarm contaminants.

4.1. The Mass Spectrum of Compact Binaries

In Figure 1 we show the joint primary and secondary-

mass distributions, inferred using a strongly modeled

and a weakly modeled approach. Our FullPop-

4.0 strongly modeled approach is modified from the

Power law + Dip + Break analysis of the pre-

vious GWTC-3.0 catalog (Fishbach et al. 2020; Farah

et al. 2022; Abbott et al. 2023a; Mali & Essick 2025);

see Appendix B.1 for a model description. Our weakly

modeled analysis approximates the m1–m2 space with a

BGP (Mandel et al. 2017; Abbott et al. 2023a; Ray et al.

2023a, 2024); see Appendix C.2 for further discussion.

The FullPop-4.0 model uses the default models in Ta-

ble 1 for the redshift and component spins, and for NS

masses (m < 2.5M⊙) the spin magnitude distribution is

truncated over the range χ ∈ [0, 0.4]. The BGP analysis

fixes the Power Law Redshift evolution to κ = 3 (see

Appendix B.4), and the spin distribution to be uniform

in magnitude (again truncated over χ ∈ [0, 0.4] for NS

masses) and isotropic in orientation.

We observe an enhanced merger rate around

m1 ∼ m2 ≲ 2M⊙, representing BNS systems,

an additional subpopulation at unequal masses

m1 ∼ 9M⊙ and m2 ≲ 2M⊙ consistent with

NSBHs, and a third BBH subpopulation at

m1,m2 ≳ 9M⊙. In the upper triangle of Figure 1, we

show the fractional uncertainty as a function of mass, a

unitless quantity ∆R/R defined as the 95th - 5th per-

centile uncertainty divided by the median merger rate.

The rate is best constrained at equal masses, where the

majority of mergers are observed, and in the BBH range

10–40M⊙. Due to fewer observations, the uncertainty

is larger for BNS and NSBH systems.

In Figure 2, we show the marginalized primary

and secondary-mass distributions for our strongly and

weakly modeled reconstructions of the merger rate, fo-

cusing on the transition between NSs and BHs. The

models are consistent within uncertainties, indicat-

ing that systematic error from model assumptions are

smaller than the statistical uncertainties. The most no-

table difference between the FullPop-4.0 and BGP re-

sults is the large uncertainty in the BGP primary-mass

distribution relative to the secondary mass. There are

significantly more observed CBCs with light secondary

masses m2 ≲ 15M⊙ than primary masses m1 ≲ 15M⊙
(simply by the definition m2 < m1), and so the data-

driven BGP is more uncertain for small primary masses,

while the FullPop-4.0 results are more model driven.

At m2 = 5M⊙, the FullPop-4.0 model adopts an al-

ternative pairing function to more naturally distinguish

the pairing behavior of BNS and NSBH systems from

that of BBH systems, introducing a discontinuity in the

secondary-mass distribution (Figure 2) at the transition

point. We discuss the behavior of the population at

the transition from NSs to BHs and the astrophysical

insights below in Section 4.3.

4.2. Merger Rates

Since we self-consistently include all events in the cat-

alog, our measurements of the binary merger rates are

robust to events which straddle different source classes.

We calculate the rates of BNS, NSBH, and BBH mergers

by assuming any object with mass 1M⊙ < m < 2.5M⊙
is a NS, and any object with mass m > 2.5M⊙ is a BH.

In all models, we assume the rate evolves with redshift

in a manner that is uncorrelated with mass (Fishbach



8

100

101

F
ra

ct
io

n
al

u
n

ce
rt

ai
n
ty

1 3 10 30 100

m1 [M�]

1

3

10

30

100
m

2
[M
�

]

FullPop-4.0

1 3 10 30 100

m1 [M�]

1

3

10

30

100

BGP

10−3

10−1

101

103

d
R

d
(l

n
m

1
)d

(l
n
m

2
)

[G
p

c−
3

y
r−

1
]

Figure 1. The complete mass spectrum, inferred using the strongly modeled FullPop-4.0 and weakly modeled BGP analyses.
In the lower triangle of the m1–m2 plane (where m1 > m2 by definition), we show median merger rate density across primary
and secondary masses. At m2 = 5M⊙, the FullPop-4.0 model transitions to an alternative pairing function to allow for
NSBHs, hence the discontinuity at m2 = 5M⊙. In the upper triangle we show the fractional uncertainty in the merger rate
reflected across the diagonal. The fractional uncertainty ∆R/R is difference of the 95th and 5th percentile values divided by
the median merger rate. Both the FullPop-4.0 and BGP models show similar broad features: a population of BNSs at primary
and secondary masses ≲ 2M⊙, a population of NSBHs at primary mass ∼ 9M⊙ and secondary mass ≲ 2M⊙, and finally the
population of BBHs with primary and secondary masses ≳ 9M⊙. The uncertainties are the smallest in the ∼ 9M⊙ and ∼ 30M⊙
BBH peaks.

Table 2. Merger rates in units Gpc−3 yr−1 in different mass ranges, according to the FullPop-4.0 and BGP models.

BNS NSBH BBH NS–Gap BH–Gap Full

m1 ∈ [1, 2.5]M⊙ m1 > 2.5M⊙ m1 > 2.5M⊙ m1 ∈ [2.5, 5]M⊙ m1 > 2.5M⊙ m1 > 1M⊙

m2 ∈ [1, 2.5]M⊙ m2 ∈ [1, 2.5]M⊙ m2 > 2.5M⊙ m2 ∈ [1, 2.5]M⊙ m2 ∈ [2.5, 5]M⊙ m2 > 1M⊙

FullPop-4.0 89+159
−67 23+20

−13 19+7
−5 6.7+9.2

−4.6 2.5+3.4
−1.6 130+160

−80

BGP 49+121
−42 30+54

−21 19+7
−5 15+46

−14 1.5+4.9
−1.3 110+130

−60

Merged 7.6–250 9.1–84 14–26 1.2–61 0.2–6.3 49–300

Simple Uniform BNS 13–170 – – – – –

Note—For BNS systems, we also estimate the rate assuming a Simple Uniform BNS model. We show rates of BNS, NSBH, and
BBH assuming objects with mass m ∈ [1, 2.5]M⊙ are NSs and m > 2.5M⊙ are BHs. We also show rates within the purported
lower-mass gap between astrophysical NSs and BHs, according to these models. In the third row, we show the merged estimates,
taking the union of the 90% credible intervals for the FullPop-4.0 and BGP models, in order to account for model systematics.
We quote merger rates at redshift z = 0.

et al. 2018; Abbott et al. 2023a). We quote merger rates

in the local Universe, at redshift z = 0.

Our strongly-modeled FullPop-4.0 and weakly-

modeled BGP approaches infer different rates over

the m1–m2 space, and hence different rates in each

binary source class. To marginalize over the sys-

tematic modeling uncertainty, we take the union of

both 90% credible intervals. The rates thus ob-

tained are 7.6–250Gpc−3 yr−1 for BNS mergers,

9.1–84Gpc−3 yr−1 for NSBH mergers, and 14–

26Gpc−3 yr−1 for BBH mergers. In Table 2, we

show rates in these classes using different models and

within purported mass gaps.

The BNS merger rate measurements may be sensitive

to assumptions about NS pairing, and so we also es-

timate the BNS merger rate assuming a simple, fixed
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Figure 2. A comparison of the merger rate at redshift z = 0, as a function of component mass for the FullPop-4.0 and
BGP models. In the upper panel, we show the merger rate as a function of primary mass, marginalized over secondary mass.
In the lower panel, we show the merger rate as a function of the secondary mass, marginalized over the primary mass. At
m2 = 5M⊙, the FullPop-4.0 model transitions to an alternative pairing function to allow for NSBHs, hence the discontinuity
in the secondary mass. The median of the inferred merger rate is shown with a solid line, and the 90% credible interval is shown
in the shaded region. The BGP weakly modeled approach has larger uncertainties due to increased flexibility. Both the strongly
modeled and weakly modeled approaches find local maxima in the merger rate at m2 ∼ 1 − 2M⊙ and m2 ∼ 6.5 − 9M⊙ in the
secondary-mass distribution. However, the BGP model does not confidently recover the low mass peaks in the primary-mass
distribution. In the inset, we show the FullPop-4.0 inferred gap depth parameter A (see Appendix B.1), where A = 1 (a
completely empty gap) is disfavored.

population. We assume a uniform mass distribution

between 1M⊙ and 2.5M⊙ for the component masses,

isotropically distributed spins with uniform spin magni-

tudes below 0.4, and a merger rate uniform in comoving

volume up to z = 0.15. Under this fiducial model (de-

noted Simple Uniform BNS in Table 2), we infer a

BNS merger rate of 13–170Gpc−3 yr−1.

The estimates in Table 2 are consistent with our previ-

ous analysis (Abbott et al. 2023a) and the uncertainties

on the rate in each source class have generally decreased

due to our larger catalog size. Although it is within

uncertainties, our inferred merger rate for BNS systems

has notably decreased by a factor of ∼ 2 (cf. PDB (pair)

and BGP in Table 2 of Abbott et al. 2023a). This is a

result of the improved detector range and observing time

together with the lack of new BNS detections.

4.3. The Neutron Star–Black Hole Transition

Electromagnetic (EM) observations have previously

suggested the existence of a mass gap between NSs and
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BHs (Bailyn et al. 1998; Ozel et al. 2010; Farr et al.

2011). On the lower end of the gap, nonrotating NS

masses are bounded by a physical limit, the Tolman–

Oppenheimer–Volkoff (TOV) mass (e.g., Kalogera &

Baym 1996). Astrophysical observations, heavy-ion col-

lision experiments, and modeling of the dense mat-

ter equation of state (EoS) at nuclear densities bound

Mmax,TOV ∼ 2.2–2.5M⊙ (Landry et al. 2020; Dietrich

et al. 2020; Legred et al. 2021; Huth et al. 2022; Ai

et al. 2023; Dittmann et al. 2024; Rutherford et al. 2024;

Koehn et al. 2025), and studies on the remnant in the

BNS merger GW170817 (Abbott et al. 2017) place limits

in the range ≲ 2.3M⊙ (Margalit & Metzger 2017; Rez-

zolla et al. 2018; Ruiz et al. 2018; Abbott et al. 2020b;

Nathanail et al. 2021).

On the upper end of the gap, EM observations histor-

ically identified a dearth of BHs in the range ∼ 3–5M⊙
(Bailyn et al. 1998; Ozel et al. 2010; Farr et al. 2011),

hinting at an astrophysical mass gap between NSs and

BHs, or perhaps a selection effect obscuring such ob-

jects. More recently, observations of noninteracting bi-

nary systems (Thompson et al. 2018; Jayasinghe et al.

2021) and radio pulsar surveys (Barr et al. 2024) suggest

the presence of a population of compact objects within

the gap. Indeed, the GW events GW190814 (Abbott

et al. 2020e) and GW230529 (Abac et al. 2024) are fur-

ther evidence that the transition between NSs and BHs

is populated, albeit sparsely.

With the additional GWTC-4.0 data, the GW picture

of the purported lower-mass gap is becoming clearer and

structures around the transition from NSs to BHs are

emerging. In both our strongly modeled FullPop-4.0

and weakly modeled BGP analyses, we find evidence for

a prominent pair of peaks at NS masses ∼1.5M⊙
and at BH masses ∼9M⊙ on each side of the

lower-mass gap. A completely empty gap be-

tween NSs and BHs is disfavored. We cannot rule

out the existence of extremely narrow gaps in the com-

pact object spectrum, though such a feature requires

fine tuning of the supernova explosion mechanism, fall-

back, binary interactions or other physical processes

(e.g., Fryer et al. 2012; Belczynski et al. 2012).

Our FullPop-4.0 model detects a peak in the BH

merger rate at 9.02+0.41
−1.21 M⊙. We find that merging NSs

represent the global maximum of the compact object

mass spectrum at 1.23+0.14
−0.15 M⊙. At the transition from

NSs to BHs, FullPop-4.0 allows for an additional sup-

pression in the merger rate, parameterized by a gap

depth parameter A where A = 1 corresponds to an abso-

lute gap with zero mergers and A = 0 corresponds to no

additional suppression. We show the measurement on A

in the inset in Figure 2. A is consistent with zero, so the

lower and upper bounds of the gap (e.g., the maximum

NS mass and the minimum BH mass) are not measured

away from the prior.

Earlier precursor analyses to FullPop-4.0 showed

that the merger rate between ∼ 3–5M⊙ is likely sup-

pressed relative to a power-law continuum (Fishbach

et al. 2020; Abbott et al. 2021a; Farah et al. 2022), us-

ing older datasets. In Abbott et al. (2023a), we used a

strongly modeled analysis on GWTC-3.0 (compare the

PDB model to FullPop-4.0) to argue that the tran-

sition from NSs to BHs is likely suppressed, but also

may be partially filled. FullPop-4.0 measures a simi-

lar mass spectrum to these previous analyses, but rein-

treprets the data as evidence for a rise at ∼ 9M⊙,
and no additional suppression between the NS and BH

peaks (Mali & Essick 2025 make similar conclusions on

GWTC-3.0).

We corroborate our strongly modeled FullPop-4.0

conclusions with a weakly modeled BGP approach, and

our constraints are improved relative to a similar BGP-

based model in Abbott et al. (2023a). Unlike the

FullPop-4.0 model, however, the BGP analysis does

not distinguish between peaks, gaps, or a continuum: as

a weakly modeled approach, the shape of the population

is inferred directly without an associated interpretation.

The BGP model infers a nonzero merger rate between

the NS to BH peaks consistent with an underlying con-

tinuum, and no evidence for a sharp gap. However,

the smoothing kernel in the BGP model makes it a

priori less sensitive to deep gaps, so we cannot rule

them out either. The BGP model also observes NS and

BH peaks. We quantify the significance as the frac-

tion of hyperparameter samples where the merger rate

density is higher than the merger rate in the neigh-

boring bins. The merger rate maximizes for NSs in

the range 1M⊙ ≤ m2 ≤ 2M⊙ at 99% credibility and

the low-mass BH peak occurs in the secondary mass

7.5M⊙ ≤ m2 ≤ 9M⊙ bin at 97% credibility.

As our knowledge improves about the compact object

population at the boundary between NSs and BHs, we

stand to learn about supernova physics (e.g., Burrows &

Vartanyan 2021) and the formation mechanisms of the

heaviest NSs and lightest BHs (Abac et al. 2024, and

references therein). If future catalogs continue to dis-

favor a completely empty gap, the standard picture of

rapid core-collapse supernovae —which features a sharp

transition in remnant masses; successful explosions leave

NSs with m ≲ 2M⊙ and failed explosions promptly col-

lapse to BHs with m ≳ 5M⊙ (e.g., Fryer & Kalogera

2001; Fryer et al. 2012)— may require modifications to

include fallback, slower instability growth, or stochas-

ticity (e.g., Fryer & Kalogera 2001; Fryer et al. 2012;
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Belczynski et al. 2012; Sukhbold et al. 2016; Ertl et al.

2019; Mandel & Müller 2020). Fallback of stellar mate-

rial can produce black holes from the maximum neutron

star mass to the lightest BH mass (∼ 6M⊙) in the rapid

implosion scenario (e.g., Ertl et al. 2019), or a slower

instability growth timescale could allow the proto-NS

to accrete enough mass before the explosion to popu-

late the mass gap (e.g., Belczynski et al. 2012; Olejak

et al. 2022; Fryer et al. 2022). Another possibility is

that stochasticity in the stellar evolution and supernovae

smooths out the remnant mass distribution and occupy

the lower-mass gap (e.g., Mandel & Müller 2020; Man-

del et al. 2020). Alternatively, the gap between NSs and

BHs may be populated by a pollution mechanism, such

as the remnants of BNS or white dwarf collisions which

participate in further hierarchical mergers (e.g., Gupta

et al. 2020; Ye et al. 2020, 2024; Barr et al. 2024; Maha-

patra et al. 2025a) or other exotic scenarios like primor-

dial black holes (e.g., Clesse & Garcia-Bellido 2022) or

gravitationally lensed events, which could be mistaken

for mass gap objects (e.g., Bianconi et al. 2023; Janquart

et al. 2024; Farah et al. 2025a).

5. POPULATION PROPERTIES OF MERGERS

CONTAINING NEUTRON STARS

In O4a, GW230529 (Abac et al. 2024) is the only NS-

containing event identified with a FAR < 0.25 yr−1. We

do not include the NSBH candidate GW230518 iden-

tified during the ER preceding O4a. Additionally, no

coincident EM counterparts were identified for triggers

(i.e., preliminary candidate GW signals flagged by the

detection pipelines when their ranking statistic exceeded

the alert threshold) during O4a based on follow-up ef-

forts conducted by EM telescopes. Thus, conclusions

presented in previous papers (Abbott et al. 2023a; Abac

et al. 2024) about the population properties of BNS and

NSBH mergers remain largely unchanged.

We adopt models and methods consistent with those

used in GWTC-3.0 (Abbott et al. 2023a). Specifically,

we adopt two different models for the NS mass distribu-

tion, one in which masses are assumed to be Gaussian

distributed, and another in which they are assumed to

follow a power law (Abbott et al. 2023a). These are re-

ferred to as the Peak model and the Power model re-

spectively. We assume that the redshift evolution of the

merger rate is fixed, and that the spins are distributed

following the PE prior (Abac et al. 2025b). A uniform

prior is used for hyperparameters of the population, with

the condition mmin ≤ µ ≤ mmax (where µ is the mean

of the Gaussian bump in the Peak model), assuming

mmax does not exceed Mmax,TOV (the maximum per-

missible NS mass as expected from the TOV limit), as

detailed in Appendix B.

When assumed to follow the Power model, NS

masses favor a mass distribution with a power-law slope

constrained to α = 7.7+5.1
−5.5. The inference from the

Peak model is broad, with largely unconstrained peak

width σ = 0.68+1.2
−0.45 M⊙ and location µ = 1.4+0.48

−0.25 M⊙.
While these results may hint at a peak emerging near

1.4M⊙, it is much broader than the relatively sharp peak

in the mass distribution of Galactic NS systems (Far-

row et al. 2019; El-Badry et al. 2024). Our inferred NS

mass distribution remains broad, with greater support

for high-mass NSs.

As no new NSBHs beyond GW230529 were confi-

dently observed in O4a, the population-level results

in Abac et al. (2024) produced using the NSBHPop

model (Biscoveanu et al. 2022b) remain unchanged.

Specifically, our inferred minimum BH mass in NSBH

systems remains 3.4+1.0
−1.2 M⊙ (Abac et al. 2024).

6. BINARY BLACK HOLE POPULATION

In this section, we analyze the astrophysical popula-

tion of BBHs using data from GW events with a FAR

< 1 yr−1. We only include events whose 1% lower limit

on both component mass posteriors (under the PE pri-

ors) is larger than 3M⊙. There are 84 events from O4a

that meet this criterion in addition to the 69 BBH events

from GWTC-3.0, which brings the total number of BBH

events passing our FAR threshold to 153. Of the events

considered in O4a, only GW230529 does not meet this

criterion and is not considered in the analyses below (see

Section 3).

6.1. Primary Mass

In this section, we illustrate the main findings of the

strongly and weakly modeled approaches using results

from the Broken Power Law + 2 Peaks (see Ap-

pendix B.3) and B-Spline (see Appendix C.1) models,

respectively. We chose the Broken Power Law + 2

Peaks model as our fiducial mass model because it per-

formed the best in our model comparison study. It was

first introduced by Callister & Farr (2024) to describe

the GWTC-3.0 mass distribution. Results from a selec-

tion of other models considered in the model compari-

son study can be found in Appendix D.1, while models

that employ a weakly modeled approach can be found

in Appendix D.4, both of which include comparisons

to the fiducial Broken Power Law + 2 Peaks and

B-Spline models. The strongly modeled approach em-

ploys the default models listed in Table 1 for the other

source parameters, namely the Power Law Redshift

and Gaussian Component Spins models.
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Figure 3. Differential merger rate as a function of primary mass (evaluated at z = 0.2) of the Broken Power Law + 2
Peaks model (orange) and B-Spline model (blue) compared to the Power Law + Peak model from GWTC-3.0 (Abbott et al.
2023a). The solid lines indicate the posterior medians and the shaded regions show the 90% credible interval of each model.
Comparing these results, it is clear that a single power law is a poor description of the the low-mass end of the spectrum.

We identify a global peak at ∼10M⊙ and find

that it is robust to model variations. A Gaussian-

like peak at ∼10M⊙ was first identified by Tiwari

& Fairhurst (2021) and Edelman et al. (2022) using

GWTC-2.0 and later by the weakly modeled approaches

in Abbott et al. (2023a) using GWTC-3.0. Figure 3

shows the rate dR/dm1 as a function of primary mass

at z = 0.2 inferred by these models compared to the

Power Law + Peak (see Appendix B of Abbott et al.

2023a for a description of this model) inference with

GWTC-3.0 from Abbott et al. (2023a).1 The low-mass

Gaussian component of the Broken Power Law + 2

Peaks model infers a global peak in the primary mass

spectrum at m1 = 9.8+0.3
−0.6 M⊙ relative to the underly-

ing broken power law continuum. The B-Spline model

also recovers a global peak at m1 = 10.1+0.7
−0.7 M⊙. Both

values are consistent with GWTC-3.0, which inferred a

global peak at m1 = 10.2+0.3
−0.6 M⊙ with various weakly

modeled approaches.

A broken power law is necessary to describe the

continuum structure above ∼15M⊙ (see Figure 3).

Below ∼35M⊙, the continuum of BH masses is well de-

scribed by a power law with spectral index α1 = 1.7+1.2
−1.8.

Above ∼35M⊙, the continuum steepens, with a spectral

index of α2 = 4.5+1.6
−1.3 that is consistent with the Power

Law + Peak result from GWTC-3.0 (α = 3.5+0.6
−0.6 M⊙).

We find that α2 > α1 at 97.7% credibility. Though

1We quote BBH merger rates at z = 0.2 to be consistent with
Abbott et al. (2023a) and because z ∼ 0.2 is where we best
constrain the merger rate.

this continuum structure was identified by Callister &

Farr (2024), it was not identified by the strongly mod-

eled approaches in Abbott et al. (2023a), in part due

to the limited flexibility of models employed in Abbott

et al. (2023a). To illustrate this, in Figure 4 we present

a re-analysis of GWTC-3.0 using the Broken Power

Law + 2 Peaks model alongside the GWTC-4.0 result,

which shows improved constraints across the full mass

spectrum.

We identify a feature at ∼35M⊙. Using the

strongly modeled approach, we find that this feature is

consistent with either: (i) an over-density that peaks

at m1 = 32.7+2.7
−6.5 M⊙ relative to an underlying bro-

ken power law (i.e., the Broken Power Law + 2

Peaks result), or (ii) a broken power law with break

mass mbreak = 34.1+3.8
−3.3 M⊙ (i.e., a broken power law

without a second peak near the break). See Appendix

D.1 for a more detailed discussion of this result. The

former conclusion is supported by the B-Spline model,

which exhibits a local peak at m1 = 33.5+2.2
−4.5 M⊙, con-

sistent with other models that employ a weakly modeled

approach in Appendix D.4.

Additional structure may be present in the

mass spectrum. A bump near ∼20M⊙ is present

in some of the weakly modeled approaches (see Fig-

ure 20 in Appendix D.4). We cannot conclude with

the strongly modeled approach whether adding a third

Gaussian component to the Broken Power Law + 2

Peaksmodel in this region is required by the data or not

(as quantified by the log Bayes factor log10 B = −0.34

between the default model and one including a third
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peak). This feature was first reported in an analysis of

GWTC-2.0 (Tiwari & Fairhurst 2021) and was present

in several analyses of GWTC-3.0 (Abbott et al. 2023a;

Edelman et al. 2023; Tiwari 2023; Godfrey et al. 2023).

Additionally, the B-Spline and other weakly modeled

approaches show a rise in the merger rate relative to the

Broken Power Law + 2 Peaks result in the ∼60M⊙
region, which can be seen in Figure 3 and Figure 20. A

previous study of GWTC-3.0 found evidence for a simi-

lar feature in this region (Magaña Hernandez & Palmese

2025).

We do not place informative constraints on the indi-

vidual parameters that govern low-mass smoothing for

the Broken Power Law + 2 Peaks model. We cau-

tion against astrophysically interpreting the BBH pri-

mary mass distribution below ∼8M⊙ because of the bias

that may be introduced by removing the probable NS-

containing events in the manner described in Section 3.

Removing such events is responsible for the discrepancy

below ∼8M⊙ between Figure 2 and Figure 3.

GWTC-4.0 includes an exceptional high-mass BBH,

GW231123 (Abac et al. 2025e), whose inferred compo-

nent masses lie at the extreme upper end of those in our

dataset. To check if GW231123 is an outlier with respect

to the mass distribution of BBHs, we construct mock

catalogs containing 153 detected events following the in-

ferred population without GW231123, and calculate the

distribution of maximum detectable BH masses. The

total mass of GW231123 lies at the 87+6
−10th percentile

of this distribution. This shows that while GW231123

lies in the tail of the distribution, its total mass is con-

sistent with the inferred mass spectrum; the degree of

consistency is more than was the case with GWTC-3.0

data alone (Abac et al. 2025e).

The main compact binary formation scenarios (Man-

del & Farmer 2022 and references therein)—isolated bi-

nary evolution and dynamical assembly in dense stellar

environments—have both been shown to produce popu-

lations consistent with current observations (Mandel &

Broekgaarden 2022). A peak near m1 ∼ 10M⊙ is often

predicted by isolated binary evolution models (Dominik

et al. 2015; Belczynski et al. 2020; Giacobbo & Mapelli

2018; Wiktorowicz et al. 2019; Neijssel et al. 2019), while

mass distributions from dynamical formation, such as in

young and globular clusters, typically peak above 10M⊙
(Rodriguez et al. 2016a; Hong et al. 2018; Rodriguez

et al. 2019; Banerjee 2021; Antonini & Gieles 2020).

However, predictions from isolated and dynamical for-

mation often overlap and can vary significantly based

on the assumptions and methodologies used, making it

difficult to conclude the origin of the observed catalog

or constrain formation physics based on features in the

marginal mass distributions.

A feature that may provide distinguishing power be-

tween the isolated and dynamical channels is the ex-

istence of an upper mass gap, in the range 45M⊙ ≲
m ≲ 120M⊙. Such a dearth would be consistent with

the theorized pair-instability mass gap, arising from

the complete disruption of massive stars due to run-

away electron–positron pair production (Woosley 2017;

Mapelli et al. 2020; Farmer et al. 2019). While the pre-

cise locations of the lower and upper edges of the pair-

instability mass gap are sensitive to physical assump-

tions (Renzo et al. 2020; van Son et al. 2020; Woosley

& Heger 2021; Shen et al. 2023; Winch et al. 2024),

the feature tends to be a robust prediction of most stel-

lar evolution models (Marchant et al. 2018; Marchant &

Moriya 2020; Renzo et al. 2020; Woosley & Heger 2021).

The gap may not be completely empty due to overmas-

sive stellar envelope fallback or stellar mergers (Di Carlo

et al. 2019, 2020; Mapelli et al. 2020; Kremer et al. 2020),

hierarchical BBH mergers in clusters or in AGN envi-

ronments (Mckernan et al. 2018; Rodriguez et al. 2019;

McKernan et al. 2020; Yang et al. 2019; Mapelli et al.

2021; Antonini et al. 2019; Fragione & Silk 2020; Liu &

Lai 2021; Martinez et al. 2020; Arca Sedda 2020; Ma-

hapatra et al. 2021, 2025b, 2024), or even due to pri-

mordial BHs (Postnov & Yungelson 2014; Bird et al.

2016; Clesse & Garcia-Bellido 2022). The decrease in

the merger rate above m1 ∼ 35M⊙ seen in all models

and the subsequent rise near m1 ∼ 60M⊙ seen in the

weakly modeled approaches may hint toward a polluted

mass gap.

6.2. Mass-Ratio

Figure 5 shows the differential merger rate dR/dq
evaluated at z = 0.2 inferred by the Broken Power

Law + 2 Peaks and B-Spline models compared to

the Power Law + Peak result from GWTC-3.0.2

We find that the mass-ratio distribution can

be described by a power-law with an index

βq = 1.2+1.2
−1.0 that is consistent with GWTC-3.0 (βq =

1.1+1.7
−1.3) with a reduction in uncertainty. The B-Spline

model shows a reduced rate above q ≳ 0.8 relative to the

Broken Power Law + 2 Peaks result. More flexible

parametrizations in the strongly modeled approach were

explored (see also the other weakly modeled approaches

in Figure 20, which do peak near unity), but model com-

2Models that utilize B-Splines infer the separable distribution p(q)
but the results of such models shown in this section are actually
the conditional marginal distribution p(q|m2>3M⊙). See Ap-
pendix C.1 for further details.
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Figure 4. Differential merger rate as a function of primary mass (evaluated at z = 0.2) of the Broken Power Law + 2
Peaks model inferred with GWTC-4.0 compared to the same model applied to only GWTC-3.0 BBH events. The orange shaded
region shows the 90% credible interval for GWTC-4.0 and the solid orange curve shows the posterior median, while the black
dashed curves bound the 90% credible region for GWTC-3.0 and the solid black curve shows the posterior median. The inferred
distribution is similar between catalogs, which highlights that the low-mass structure identified in GWTC-4.0 was present in
GWTC-3.0. The inset figure shows the joint posterior of the broken power law index parameters α1 and α2 for GWTC-3.0
(gray) and GWTC-4.0 (orange), with the contours showing the 5th, 50th, and 95th percentiles. The black dashed curve in the
inset indicates where α1 = α2.
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Figure 5. Differential merger rate as a function of mass-
ratio (evaluated at z = 0.2) of the Broken Power Law +
2 Peaks model (orange) and B-Spline model (blue). The
fiducial Power Law + Peak model from Abbott et al.
(2023a) is included for comparison. Solid curves indicate
posterior medians and the shaded (dashed) regions show 90%
credible intervals.

parisons were inconclusive. Similarly, in GWTC-3.0,

Godfrey et al. (2023) inferred a mass-ratio distribution

peaked away from unity using a weakly modeled ap-

proach, while Rinaldi et al. (2025) found equal evidence

for two strongly modeled approaches with very distinct

behavior above q ≳ 0.7.

Models that incorporate correlations between source

parameters have a greater potential to distinguish be-

tween formation channels than uncorrelated ones. We

next present results from two different models that cor-

relate features of the primary mass spectrum with dif-

ferent mass-ratio distributions.

BHs with masses ∼35M⊙ preferentially merge

with other BHs of more equal mass relative to

those in the underlying mass continuum. The

Extended Broken Power Law + 2 Peaks model

modifies the Broken Power Law + 2 Peaks model

by allowing each primary mass mixture component (i.e.,

the broken power law and two Gaussian components) to

be associated with a different power-law-mass-ratio dis-

tribution. Figure 6 shows the mass-ratio distribution for

each mixture component. Specifically, each component

infers a different power-law index βq, with βBP
q = 0.1+1.7

−1.3

for the broken power law, βpeak1
q = 1.6+9.6

−8.1 for the

Gaussian component that captures the ∼10M⊙ peak,

and βpeak2
q = 7.4+4.8

−5.1 for the second Gaussian com-

ponent that captures the ∼35M⊙ feature. Critically,

βpeak2
q > βBP

q at 97.3% credibility. Other studies of

GWTC-3.0 have drawn similar conclusions about the

pairing preferences of high mass BHs (e.g., Li et al.
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2022; Baibhav et al. 2023; Sadiq et al. 2024; Galaudage

& Lamberts 2025; Roy et al. 2025).

BHs with masses ∼10M⊙ may prefentially

merge with lighter BHs. The region bounded by the

solid blue curves in the bottom panel of Figure 6 shows

the mass-ratio distribution of the ∼10M⊙ peak inferred

with the Isolated Peak model. This model is a mix-

ture of a Gaussian peak and a B-Spline (continuum)

in primary mass, and the mass ratio and spin distribu-

tions are inferred separately for each mixture component

with B-Splines (see Appendix C for further details). The

Gaussain peak is inferred at ∼10M⊙ and its mass-ratio

distribution exhibits a peak at q = 0.74+0.13
−0.13, a feature

that a single power law is unable to reproduce. This

could explain the large uncertainty in βpeak1
q from the

Extended Broken Power Law + 2 Peaks model.

The solid blue curve in Figure 6 shows the mass-ratio

distribution of masses outside of the ∼10M⊙ peak in-

ferred by the B-Spline mixture component. Unlike the

full population mass-ratio distribution inferred by the

B-Spline model in Figure 5, this result does not pos-

sess a peak near q ∼ 0.8, indicating that the peak seen

in the full population is due largely to the events around

∼10M⊙. This mass feature was identified in GWTC-3.0

by Godfrey et al. (2023).

Most formation channels generally favor equal mass

systems. For example, dynamical formation can pro-

duce systems with a wide range of mass ratios, but pre-

dicted distributions typically peak at unity (Rodriguez

et al. 2016a; Torniamenti et al. 2024). Certain hier-

archical mergers may not necessarily follow this trend,

in particular mergers between first generation and sec-

ond generation BHs have been shown to produce a

mass-ratio distribution peaked near q ∼ 0.5 (Rodriguez

et al. 2019). Mass transfer during the contact phase

of binaries formed via chemically homogeneous evolu-

tion (de Mink & Mandel 2016; Marchant et al. 2016)

leads to a strong preference for equal mass-ratio systems,

but this mechanism is thought to be important for bi-

naries with m1 ≳ 10M⊙ (du Buisson et al. 2020; Zevin

et al. 2021; Riley et al. 2021). Mass-ratio reversal within

the stable mass transfer channel can lead to a peak in

the mass-ratio distribution between q ∼ 0.6-0.8 (Neijs-

sel et al. 2019; van Son et al. 2022b), which is qualita-

tively consistent with the mass-ratio distribution of the

∼10M⊙ inferred with the Isolated Peak model. Sta-

ble mass transfer also predicts a peak near ∼10M⊙ that

is robust to uncertainties in the metallicity-dependent

star formation history (van Son et al. 2022a) and other

physical uncertainties of the channel (van Son et al.

2022c).
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Figure 6. Top Panel: The 90% credible regions for the
mass-ratio distribution of the ∼10M⊙ peak (solid orange
curves), ∼35M⊙ peak (dashed curves), and continuum (or-
ange shaded region) components of the Extended Broken
Power Law + 2 Peaks model. Bottom Panel: The 90%
credible regions for mass-ratio distribution of the ∼10M⊙
peak (solid blue curves) and the rest of the mass spec-
trum (blue shaded region) inferred with the Isolated Peak
model. The ∼10M⊙ peak mass-ratio distribution from the
Extended Broken Power Law + 2 Peaks is included for
comparison.

6.3. Spin

We next present the spin distribution of the BBH pop-

ulation through O4a. We model spins using two different

parameterizations: the magnitudes χi and tilt angles θi
(Section 6.3.1), and the effective inspiral spin χeff and

effective precessing spin χp (Section 6.3.2). The effec-

tive inspiral spin χeff is the mass-weighted average of

the component spins aligned with the binary’s orbital

angular momentum (Racine 2008; Ajith et al. 2011).

The effective precessing spin χp characterizes the degree

of relativistic precession caused by spin–orbit misalign-

ment, capturing the effect of the in-plane spin compo-

nents (Schmidt et al. 2011, 2012, 2015; Gerosa et al.

2021); these are defined in Equations 15 and 16 of Abac
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et al. (2025a). More details about spin parameterization

are given in Appendix B.5.

Previous analyses of the BBHs observed through

O3 found that BH spin vectors tend to be small

in magnitude (χ ≲ 0.3) and preferentially—but not

exclusively—lie above the orbital plane (cos θ > 0; Ab-

bott et al. 2019a, 2021a, 2023a). The new observa-

tions in GWTC-4.0 further support these conclusions

and additionally suggest more structure in the compo-

nent and effective spin distributions, enabled by changes

to the models used in previous population analyses: (i)

the spin magnitude distribution has support at

χ ≈ 0, (ii) the spin tilt distribution may peak

away from perfect alignment with the orbital an-

gular momentum, and (iii) the χeff distribution

is asymmetric about its peak. We elaborate upon

these new features in the following subsections.

6.3.1. Spin Magnitudes and Tilts

Spin magnitudes and tilt angles provide insight about

BBH formation and evolution (e.g., Mandel & Farmer

2022; Mapelli 2020); we begin with spin magnitudes. If

angular momentum transport in stars is efficient, stellar

cores rotate slowly, resulting in small spin magnitudes

for isolated BHs (Fuller & Ma 2019; Ma & Fuller 2019;

Fuller et al. 2019). However, binary interactions can sig-

nificantly influence BH spins through mechanisms such

as tides (Hut 1981; Packet 1981; Zaldarriaga et al. 2018;

Qin et al. 2018; Bavera et al. 2020; Mandel & Fragos

2020) and accretion (Hut 1981; Packet 1981; van den

Heuvel et al. 2017; Neijssel et al. 2019; Steinle & Kes-

den 2021; Stegmann & Antonini 2021). If a BBH forms

from a pre-existing isolated stellar binary, tidal inter-

actions can spin up the progenitor of the second-born

BH (Bavera et al. 2020; Qin et al. 2019), yielding spin

magnitudes of χ ≈ 0.2−0.4 (Ma & Fuller 2023), al-

though these can be reduced by stellar winds (Tout

& Pringle 1992). Chemically homogeneous evolution—

involving tidally locked, high-mass, low-metallicity, close

binaries—may produce even larger spins (Mandel &

de Mink 2016; de Mink & Mandel 2016). Alternatively,

large spin magnitudes may point toward a hierarchical

merger origin, where one or both BHs are remnants of

previous BBH mergers (Rodriguez et al. 2019; Zhang

et al. 2023; Doctor et al. 2019; Kimball et al. 2020; Payne

et al. 2024; Gerosa & Fishbach 2021; Fishbach et al.

2017; Gerosa & Berti 2017; Mould et al. 2022b; Maha-

patra et al. 2021, 2025b, 2024), which are predicted to

have χ ∼ 0.7 (Lousto et al. 2010).

With this astrophysical context, we present our mea-

surement of the spin magnitude distribution through

O4a. The left column of Figure 7 shows the marginal

distributions of χ using the strongly modeled ap-

proach (Gaussian Component Spins; blue) and

weakly modeled approach (B-Spline; green). The

Gaussian Component Spins model (Equation B26)

describes the χ population as a truncated Gaussian dis-

tribution. This is a departure from the Default spin

model of GWTC-3.0. There, a non-singular Beta dis-

tribution was used (Abbott et al. 2023a), which forces

p(χ) = 0 at χ = 0, 1 and thus cannot measure contribu-

tions to the population at near-minimal or near-maximal

spins. Allowing for more model flexibility at the χ dis-

tribution’s boundaries is crucial, as there exists an on-

going discussion in the literature about whether or not

there is an over-density of BBHs with χ ≲ 0.01 (Kim-

ball et al. 2020; Galaudage et al. 2021; Callister et al.

2022; Tong et al. 2022; Mould et al. 2022a; Hussain

et al. 2024). We find that the Gaussian Component

Spins model is preferred over the Default spin model

of GWTC-3.0 by log10 B = 0.66; additional parametric

spin magnitude (and tilt) models are discussed in Ap-

pendix D.2. The widening of the 90% credible regions

for the χ and cos θ distributions at their boundaries un-

der the B-Spline model seen in Figure 7 is a prior-

driven effect common in spline modeling (e.g., Golomb

& Talbot 2023; Edelman et al. 2023).

In GWTC-4.0, we constrain p(χ ≈ 0) > 0 un-

der both the strongly and weakly modeled ap-

proaches. At 90% credibility, our recovered spin mag-

nitude distribution peaks between χ = 0.01–0.23, as

measured by the µχ location parameter. Broadly, BH

spins are inferred to be predominantly non-extremal,

with the Gaussian Component Spins model finding

that 90% of BHs having χ < 0.57. The comparative

dearth of observed BBHs with large spins disfavors a

population dominated by second-generation BHs. How-

ever, the precise fraction of systems with large spin

magnitudes is model dependent: the Gaussian Com-

ponent Spins and B-Spline models only disagree at

90% credibility for χ > 0.83. At χ = 0.8, 0.9, and

1.0, their p(χ) distributions differ at the 85%, 96%, and

98% levels, respectively. While the Gaussian Com-

ponent Spins model approaches p(χ) ∼ 0 at χ = 1,

the B-Spline model infers a larger, nearly flat distribu-

tion from χ = 0.6 to 1. Similar behavior was found in

GWTC-3.0 (Godfrey et al. 2023), and attributed to a

subpopulation with near-uniform spin magnitudes. The

discrepancy between our two models may arise from lim-

ited flexibility in the strongly modeled approach; a sin-

gle truncated Gaussian cannot increase the probability

at χ ≳ 0.8 without also increasing it at χ ∼ 0.2−0.5. In

GWTC-4.0, a handful of events do have preferentially

large spin magnitudes, including GW231123 which has
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Figure 7. Marginal spin magnitude χ (left) and cosine tilt angle cos θ (right) distributions under the Gaussian Component
Spins (blue) and B-Spline (green) models. The results from the GWTC-3.0 Default are shown for comparison (black dashed);
note that this model is different from what is used for GWTC-4.0. The GWTC-3.0 analysis employed a Beta distribution for spin
magnitudes rather than a truncated normal, and fixed the location of the Gaussian component of the spin tilt angle distribution
to cos θ = 1 rather than letting it vary freely in inference. The solid lines show the median of the inferred distributions from
GWTC-4.0, and the shaded regions show their 90% credible regions. The thick dashed lines show the median from GWTC-3.0,
while the thin dashed lines show its 90% credible region.

primary spin χ1 > 0.5 with high confidence (Abac et al.

2025e).

Under both the Gaussian Component Spins and

B-Spline models, the results presented in Figure 7 as-

sume that the spin magnitudes are independently and

identically distributed (IID), meaning that the func-

tion describing the population distribution is factoriz-

able in terms of χ1 and χ2, and the two are described

by the same set of hyperparameters. The data prefer

identically distributed spin magnitudes over those which

are non-identically distributed, cf. Table 12. However,

mathematically, the primary and secondary spins can-

not be IID if the purported correlation between q and

χeff is true (Farr & Farr 2025). We probe this corre-

lation in Section 6.5.2, and find support for its exis-

tence, albeit with evidence that has diminished since

GWTC-3.0. Thus, we interpret the Bayes factor in fa-

vor of IID spins as a statement that, under the Gaus-

sian Component Spins model, we cannot yet say with

statistical certainty that the spins are not identically dis-

tributed. This statement is likely driven by the fact that

individual-event spin magnitude posterior distributions

are typically wide, making χ1 and χ2 hard to distin-

guish. In general, χ1 and χ2 are not expected to be

identically distributed in nature; if q and χeff are in-

deed correlated, more informative χi measurements may

eventually reveal their non-identical nature. Figure 17

in Appendix D.2 presents posteriors on the Gaussian

Component Spins hyperparameters under the assump-

χA

χB

Figure 8. Larger (χA, lighter blue) and smaller (χB , darker
blue) spin magnitude distributions, derived from imposing
order statistics on the Gaussian Component Spins χ dis-
tribution shown in Figure 7. The solid lines show the median
of each inferred distribution, and the shaded regions show the
90% credible intervals.

tion that spin magnitudes (and tilts) are identically ver-

sus non-identically distributed.

Next, Figure 8 shows the inferred spin magnitude

distributions if, rather than sorting by the more ver-

sus less massive BH, we instead sort by the BH with

the larger (subscript A) and smaller (subscript B) spin

magnitude (Biscoveanu et al. 2021). The magnitudes

χA and χB are derived quantities and are not fit in-

dependently: to generate their distributions, we take



18

results from the Gaussian Component Spins model

and impose order statistics, assuming that χA is the

larger of two draws from the p(χ) distribution in the

left panel of Figure 7 and χB is the smaller (Abbott

et al. 2023a; Biscoveanu et al. 2021). This analysis does

not assume any sort of pairing function between spins.

Spin sorting offers an alternative way to visualize and

interpret the spin information from the IID model. The

more rapidly spinning component has a wide spin mag-

nitude distribution, with a population predictive distri-

bution (PPD) peaking at χA = 0.35, and support up

to χA,99% = 0.92+0.04
−0.08 (value of χA at which each p(χA)

trace reaches its 99th percentile, serving as a proxy for

the distribution’s maximum). The vanishing probabil-

ity at χA = 0 is a Jacobian effect of the order statis-

tics. However, if both BHs had χ ≈ 0, the χA dis-

tribution would be much more strongly peaked at small

values (Szemraj & Biscoveanu 2025), meaning that spin-

sorting results on GWTC-4.0 indicate that at least one

BH per binary has χ ≳≳≳ 0. The more slowly spin-

ning component, on the other hand, is consistent with

a narrower distribution peaking at χB = 0, and only

has support up to χB,99% = 0.6+0.09
−0.07. The observation

that spin χB magnitudes are preferentially small could

indicate small natal spins for at least one of the two

BHs, while the fact that the population is consistent

with only one BH per binary having large spin supports

the existence of some variety of spin-up mechanism in

BBH evolution.

We next turn to the spin tilt distribution. Many au-

thors argue that if BBHs are formed primarily in the

isolated binary scenario, large tilt angles are hard to ex-

plain without invoking large supernovae kicks and ineffi-

cient tides (Kalogera 2000; Gerosa et al. 2018; Steinle &

Kesden 2021; Wysocki et al. 2018; Stevenson 2022; Cal-

lister et al. 2021a), although others claim that, depend-

ing on the specifics of poorly understood supernovae

physics, even small kicks can misalign a binary (Baib-

hav & Kalogera 2024; Tauris 2022). Complete anti-

alignment (cos θ = −1) is a possible result of mass trans-

fer in the isolated channel (Stegmann & Antonini 2021).

On the other hand, BBHs formed dynamically in stel-

lar clusters are predicted to have istropically distributed

spin orientations, as there is no a priori preferential spin

direction in these environments (Rodriguez et al. 2015,

2016a, 2018; Farr et al. 2017). However, recent stud-

ies indicate that mechanisms could possibly exist for

dynamically formed BBHs to have slight preference for

cos θ > 0 (Trani et al. 2021; Banerjee et al. 2023; Kıroğlu

et al. 2025), especially for BBHs formed dynamically in

the disks of active galactic nuclei (Wang et al. 2021;

McKernan et al. 2022).

The right-hand column of Figure 7 shows the marginal

distribution of the cosine of the tilt angle, cos θ.

The cos θ population under the Gaussian Compo-

nent Spins model is a mixture between isotropic and

truncated Gaussian sub-populations (Equation B27).

Following GWTC-3.0 and earlier population analyses,

we assume that spin tilt angles are nonindependently

but identically distributed (NID) under the Gaussian

Component Spins model, meaning that while cos θ1
and cos θ2 are described by the same hyperparameters,

the population distribution is not separable in terms of

the two: we require that both BHs in a binary are drawn

from the same sub-population (either the isotropic or

the truncated Gaussian). NID tilts are favored by the

data over non-identical distribution, cf. Table 12. The

B-Spline model naturally assumes spin tilt angles are

IID, as it does not probe separate tilt sub-populations.

The Default model of GWTC-3.0 fixed the location of

the Gaussian sub-population at exact spin–orbit align-

ment (Vitale et al. 2017; Talbot & Thrane 2017; Ab-

bott et al. 2023a), making it a half-Gaussian peaking

at cos θ = 1. In GWTC-4.0, the strongly and weakly

modeled approaches both find that the spin tilt dis-

tribution may peak away from exact spin–orbit

alignment. The Gaussian Component Spins model

finds that the cos θ distribution reaches its maximum

between −0.36 and 0.94 at 90% credibility; consistently,

the B-Spline model finds the peak to lie between −0.23

and 0.96. The possibility that the tilt angle distribution

peaks away from alignment is also found in GWTC-3.0

under various models which permit such a feature (Vi-

tale et al. 2022; Edelman et al. 2023; Golomb & Talbot

2023). It is not impossible, however, for the peak of

a cos θ distribution to be inferred away from alignment

even when the true underlying population does peak at

cos θ = 1 (Vitale & Mould 2025). The inferred peak of

the GWTC-4.0 cos θ distribution is more strongly con-

strained away from unity than those spuriously found

with simulated catalogs of the same size (c.f., Vitale &

Mould 2025, Figure 4).

Under both the strongly and weakly modeled ap-

proaches, the cos θ distribution shown in Figure 7 has

support across a wide range of spin tilts, with a slightly

larger fraction of positive cos θ compared to negative.

Given this broad support, we next ask the question:

what is the lowest spin tilt angle that is absolutely re-

quired to fit GWTC-4.0 reasonably? To probe this, we

use a model which is similar to the Gaussian Compo-

nent Spins model but with p(cos θ < tmin) = 0 for

an inferred value tmin, where t ≡ cos θ (Tong et al.

2022; Callister et al. 2022); see Equation (B28). We

find tmin = −0.71+0.15
−0.19 at 90% credibility. That the
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posterior for the minimum required cos θ is inconsistent

with −1 but remains confidently negative is a somewhat

unexpected astrophysical result. If most BBHs form in

isolation, a minimum tilt cutoff is plausible but would

be expected to be closer to zero, potentially even posi-

tive. Conversely, dynamically formed BBHs should ex-

hibit isotropic tilts extending down to cos θ = −1. Our

observed tilt distribution therefore does not preclude ei-

ther broad scenario of isolated or dynamical formation—

or a mixture of both. However, the fact that the inferred

minimum required tilt is significantly negative suggests

the contribution of a dynamical formation channel to the

BBH population. We further discuss the astrophysical

interpretation of negative spin tilts and potential sub-

populations in Section 6.3.2 in the context of effective

spins.

6.3.2. Effective Spins

We next turn to the inferred distributions of the effec-

tive spins χeff and χp. Figure 9 shows the marginal dis-

tributions of χeff (left) and χp (right) under the Skew-

normal Effective Spin model (red solid; Equa-

tion B37), compared to the Gaussian Effective

Spins model result from GWTC-3.0 (purple dashed;

Equation B36). The Skew-normal Effective Spin

model (Banagiri et al. 2025) differs from the previously-

used Gaussian Effective Spins in two ways. First,

it allows for asymmetry in the χeff marginal distri-

bution. Second, the marginal χp distribution is a

truncated Gaussian which is not correlated with χeff .

On GWTC-4.0 data, the Gaussian Effective Spins

model finds that χeff and χp are preferentially uncorre-

lated, although this conclusion depends on analysis set-

tings; see Figure 19 in Appendix D.3 and the discussion

therein.

We find that the χeff distribution is skewed and

asymmetric about zero with more support for

positive values. Asymmetry can be directly probed

with the ϵ skewness parameter of the Skew-normal

Effective Spin model, defined in Equation (B37). We

find that the skewness ϵ is less than 0 (symmetry) with

99.3% credibility, as can be seen in the inset of the

left panel of Figure 9. This corresponds to a wider

χeff distribution to the right of the peak, and a nar-

rower distribution to the left, and is known as positive

skew. As discussed in Section 6.5.2, asymmetry is also

found when allowing for a linear or spline correlation

between χeff and mass ratio. Results for the GWTC-4.0

χeff distribution measured with more models, including

the Gaussian Effective Spins model and with the

weakly modeled approach are presented in Figures 19

and 21 in Appendix D.

We now discuss BBHs with spin tilts lying below

the orbital plane. These interesting probes of dynam-

ical BBH formation have cos θ < 0 and thus negative

χeff . In Table 3, we present 90% bounds for three quan-

tities which probe negative χeff in the population, using

both the Skew-normal Effective Spin and Gaus-

sian Effective Spins models for a straightforward

comparison to GWTC-3.0. First, we report the first

percentile of χeff distribution, which serves as a proxy

for the distribution’s minimum without necessitating the

inclusion of sharp features in the distribution itself (Cal-

lister et al. 2022), constraining it to fall between −0.27

and −0.08. The Gaussian Effective Spins model

finds more extremal minimum spins than the Skew-

normal Effective Spin model, likely due to its re-

quired symmetry about its peak; fitting the positive side

of the distribution forces a longer tail into the negative

region. Second, we report the fraction of the population

with negative χeff to be 0.24–0.42, with the two models

finding nearly identical results. Assuming isotropy, an

upper bound on the fraction of BBHs formed dynam-

ically in gas-free environments can be placed by dou-

bling the fraction of negative χeff (Equation 7 of Abbott

et al. 2021a); we thus find that at most 84% of BBHs

form dynamically. Third, we give the 90% upper limit

on the fraction of BBHs coming from the hierarchical

merger (HM) scenario. The HM fraction is bounded by

the consideration that ∼ 16% of BBHs coming from the

HM formation channel will have χeff < −0.3 (Baibhav

et al. 2020; Fishbach et al. 2022); we limit this fraction

to ≲ 3%. Figure 21 in Appendix D.4 shows posterior

distributions on the quantities in Table 3 for the mod-

els presented here and those using the weakly modeled

approach.

It is possible that the support for χeff < 0 may be a

byproduct of the models fitting for a peak at χeff ∼ 0

without having the flexibility for a sharp decline beyond

χeff < 0. This type of sharp feature could occur if com-

ponent spin magnitudes cluster around χ ∼ 0 but their

tilts seldom reach below cos θ = 0. In Section 6.3.1, we

address this by directly fitting for the minimum required

cos θ which is found to be confidently negative, and cor-

responds to a fraction 0.41+0.05
−0.05 of systems with spins

laying below the orbital plane. These probes of negative

spin indicate that between ∼20–40% the BBH pop-

ulation has spins which are more than 90 degrees

misaligned with the orbital angular momentum.

It is unlikely that the entire observed BBH popula-

tion originates from a single formation channel (Zevin

et al. 2021; Mandel & Broekgaarden 2022; Cheng et al.
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Figure 9. Marginal χeff (left panel) and χp (right panel) distributions. The solid lines show the median of each inferred distri-
bution, and the shaded regions show the 90% credible intervals. The GWTC-4.0 results under the Skew-normal Effective
Spin model are shown in red; the GWTC-3.0 results under the Gaussian Effective Spins model are shown in purple dashed.
The histogram inset in the left panel shows the skew parameter ϵ for the Skew-normal Effective Spin model. There is
significant preference for a skewed χeff distribution, indicated by ϵ < 0 with 99.3% credibility.

Table 3. Summary of probes of spin misalignment, as measured by χeff .

Model χeff,1% Fraction χeff < 0 HM Fraction

Gaussian Effective Spins (GWTC-3.0) −0.18+0.09
−0.12 0.28+0.12

−0.13 < 3.1 × 10−2

Gaussian Effective Spins (GWTC-4.0) −0.2+0.06
−0.07 0.34+0.09

−0.1 < 1.9 × 10−2

Skew-normal Effective Spin (GWTC-4.0) −0.11+0.04
−0.08 0.34+0.08

−0.09 < 1.3 × 10−4

Note— Summary of probes of spin misalignment, as measured by χeff . We give 90% credible
intervals for the χeff value of the first percentile of the distribution (χeff,1%), serving as a proxy
for the minimum χeff , and the fraction of χeff < 0. The HM fraction provides an upper limit to
the fraction of BBHs of hierarchical merger origin, equal to 0.16 times the fraction of systems
with χeff < −0.3 (Fishbach et al. 2022; Baibhav et al. 2020); we provide its 90% upper limit.
Posteriors for these quantities for these and other models are plotted in Figure 21.

2023; Afroz & Mukherjee 2025; Colloms et al. 2025).

Features in our spin distributions indeed suggest the

presence of multiple sub-populations. A purely random

spin channel would produce a symmetric distribution

around χeff = 0 (Rodriguez et al. 2016a,b; Farr et al.

2017). However, for all models, the observed χeff distri-

bution is asymmetric about zero, c.f., Figure 21. This

asymmetry suggests contribution from a preferentially

aligned subpopulation (Gerosa et al. 2018; Arca Sedda

et al. 2023; Banagiri et al. 2025). The skew observed

in the Skew-normal Effective Spin, as well as the

(q, χeff) Linear and (q, χeff) Spline models (see Sec-

tion 6.5.2 and Figure 21) further supports the presence

of an aligned component, either as a sub-dominant sub-

population or a dominant sub-population with small

spin magnitudes. We find a preference for small spin

magnitude (Figure 7), perhaps favoring the latter.

Finally, we discuss the effective precessing spin χp,

which can provide additional insight about spin pre-

cession in the population. The right panel of Figure 9

shows the marginal inferred χp distribution (red). We

find that precession exists on a population level, as our

models do not support (µp, σp) = (0, 0) at high credi-

bility. The GWTC-4.0 results support larger χp than

GWTC-3.0, shown for comparison in Figure 9 (pur-

ple dashed). However, different likelihood convergence

criteria (Appendix A.1) were used between GWTC-4.0

and GWTC-3.0, meaning these results are not directly

comparable. Under the less-stringent GWTC-3.0 con-

vergence criterion, the χp distribution inferred from

GWTC-4.0 data is more consistent with that found in
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GWTC-3.0, albeit still with less support for low µp

and low σp. The inferred χp distribution is more de-

pendent on analysis settings than other parameters,

largely because the individual-event prior has no sup-

port at χp = 0 making it technically difficult to reweight

individual-event posteriors to the population. We dis-

cuss the sensitivity of the χp distribution to analysis

settings in detail in Appendix D.3; see Figures 18 and

19.

6.4. Merger Rate and Redshift Evolution

Improvements in the sensitivity of current GW ob-

servatories (Ganapathy et al. 2023; Capote et al. 2025;

Abac et al. 2025a) not only provide more BBH detec-

tions, but also observations of increasingly faint sources

at higher redshifts. These observations allow us to im-

prove our population-level constraints on the evolution

of the merger rate across redshift.

Following Abbott et al. (2023a), we repeat the Power

Law Redshift strongly modeled approach. We assume

that the merger rate evolves as R(z) ∝ (1 + z)κ, and

we infer the proportionality constant and the power-law

index κ. We find that the BBH merger rate at

z = 0.2 is 29+8.5
−6.5 Gpc−3 yr−1, and the power-law

exponent is constrained to κ = 3.2+0.94
−1.00, which

represent consistent and improved constraints over our

GWTC-3.0 analysis. We infer that 99% of detectable

BBHs fall below z = 1.5+0.2
−0.2 (cf. the maximum ob-

servable redshift inferred as z = 1.1+0.2
−0.2 in Fishbach

& van Son 2023, from GWTC-3.0). We also use the

weakly modeled B-Spline approach to explore if the

data support behavior beyond a power-law evolution,

and compare our results in Figure 10. While the results

are consistent—indicating that the Power Law Red-

shift model is sufficient—the B-Spline approach infers

a larger merger rate of 38+19
−10 Gpc−3 yr−1 at z = 0.2.

Our results are nominally consistent with the cosmic

star formation rate density, with κSFR = 2.7 (Madau &

Dickinson 2014).

Our constraints on the merger rate evolution informs

our understanding of the BBH progenitor formation rate

and the delay time distribution between formation and

merger (Vitale et al. 2019; Rodriguez & Loeb 2018; Fra-

gione & Kocsis 2018; Fishbach et al. 2018; Baibhav et al.

2019; Romero-Shaw et al. 2021; Broekgaarden et al.

2022b; Mapelli et al. 2022; Fishbach & Kalogera 2021;

Chruślińska 2024; Fishbach & Fragione 2023; Boesky

et al. 2024). For BBHs formed from isolated binary evo-

lution, the merger rate evolution is typically well approx-

imated as a power law at small redshift, though the value

of the power-law index κ is sensitive to the assumed

population synthesis parameters (Neijssel et al. 2019;
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Figure 10. Comparison of redshift models between
GWTC-3.0 and GWTC-4.0. Top: Posterior on the κ pa-
rameter for the Power Law Redshift model. GWTC-4.0
shows increased support for positive values. Bottom: Median
and 90% credible regions for the comoving source frame rate
in the Power Law Redshift model. We also show a com-
parison of the Power Law Redshift model and the weakly
modeled B-Spline model and a scaled cosmic star formation
rate density (Madau & Dickinson 2014), which are consistent
within uncertainties (κSFR = 2.7).

Broekgaarden et al. 2022b; Gallegos-Garcia et al. 2021;

de Sá et al. 2024). Nevertheless, models typically prefer

values around κ ∼ 1 (Dominik et al. 2013; Baibhav et al.

2019). BBHs originating from dense star clusters predict

local merger rates of R ∼ 10Gpc−3 yr−1 (Arca Sedda

et al. 2024) and steeper values of κ ∼ 2 (Antonini &

Gieles 2020), albeit with large theoretical uncertainties

that can account for a similar evolution to the isolated

binary evolution predictions. Our observations sug-

gest a steeper evolution, with κ ∼ 2–4. While this

does not rule out either class of BBH formation, it may

be suggestive of (i) progenitor formation rates that peak

at an earlier redshift as compared to the cosmic star

formation rate density, e.g., due to a preference for low-

metallicity progenitors, and/or (ii) shorter delay times,

perhaps with a tail toward long delay times (Fishbach
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& Kalogera 2021; Karathanasis et al. 2023; Fishbach &

van Son 2023; Turbang et al. 2024; Vijaykumar et al.

2024; Schiebelbein-Zwack & Fishbach 2024).

Models of isolated binary evolution and dense star

clusters often predict that the merger rate evolves dif-

ferently across the mass spectrum (van Son et al. 2022b;

Mapelli et al. 2022; Ye & Fishbach 2024); however,

analyses of the previous catalog have not found evi-

dence for or against differential rate evolution (Fishbach

et al. 2021; Sadiq et al. 2022; van Son et al. 2022b; Ray

et al. 2023a; Heinzel et al. 2025b; Sadiq et al. 2025a).

We discuss potential mass-redshift correlations in Sec-

tion 6.5.4.

6.5. Population-level Correlations between Parameters

While much can be learned by studying the distribu-

tions of individual BBH parameters, we can glean ad-

ditional information on the population by considering

how parameters are correlated with one another across

systems. In this subsection, we provide an overview of

how parameters in the BBH population appear to be

broadly structured in various two-dimensional slices of

parameter space, briefly discussing the astrophysical im-

plications of our findings.

6.5.1. Mass Ratio and Spin Correlations

We begin by following up on the purported anti-

correlation between BBH mass ratio q and effective in-

spiral spin χeff . Although we find less support

for the specific case of anti-correlation between

q and χeff relative to GWTC-3.0, we find com-

pelling evidence for some correlated structure in

(q,χeff ). Namely, larger positive values of χeff appear

to be favored as q decreases, but it is unclear if this

is accompanied by a preference for larger negative val-

ues of χeff as well. The (q, χeff) Linear model imposes

a linear functional dependence between BBH mass ra-

tio, and the mean and (natural log) width of the χeff

distribution (see Appendix B.7). Fitting this model to

GWTC-3.0 data suggests that a linear correlation co-

efficient of δµeff|q < 0 (i.e., the case of a negative q-

dependence on the mean of the χeff distribution) with

98% credibility (Abbott et al. 2023a). Updating this

analysis to include data obtained over O4a softens the

evidence for an anti-correlation between q and the mean

of the χeff distribution, with a value of δµeff|q < 0 now

inferred at 82% credibility. However, we now see notable

evidence for a linear increase in the log width of the χeff

distribution as mass ratios become more unequal – with

δ lnσeff|q < 0 at 95% credibility.

We plot the mass-ratio dependent mean and width of

the χeff distribution inferred using the Linear model

in Figure 11. In the bottom panel of Figure 11, we

include the two-dimensional posterior distribution of

δµeff|q and δ lnσeff|q. Inspecting this plot, we see an

anti-correlation in the posterior of the two hyperparam-

eters, where larger negative values of δµeff|q imply values

of δ lnσeff|q closer to zero, and larger negative values of

δ lnσeff|q imply values of δµeff|q closer to zero. The case

in which both parameters are zero (no correlation be-

tween q and χeff of any kind) appears to be ruled out

at > 99% credibility. In practice, this implies that the

Linear model finds support for larger positive values of

χeff at more unequal mass ratios, but cannot yet con-

clude whether these are accompanied by larger negative

values of χeff as well.

Next, we probe for more intricate correlations be-

tween q and χeff using the Spline model. Similar to

the Linear model, the Spline model allows for the

mean and width of the χeff distribution to evolve with

mass ratio. However, these mass ratio dependences,

rather than being linear, are modeled flexibly with cu-

bic splines (see Appendix B.7 and Heinzel et al. 2024).

We plot the q-dependent means and widths inferred

from the Spline model alongside those from the Lin-

ear model in Figure 11. Despite fluctuations emerg-

ing in the Spline model, the two models are, within

90% credible bounds, consistent. The preference for

broadening in the χeff distribution as q decreases found

with the Linear model, does not clearly appear in the

Splinemodel. In the bottom panel of Figure 11, we also

plot the inferred gradient of the χeff distribution’s mean

and (natural log) width relative to mass ratio at q = 0.6

(roughly the value at which covariance appears most

pronounced). Here, we see a similar structure to that of

the Linear model’s (δµeff|q, δ lnσeff|q) posterior, albeit

with much more uncertainty. As a final observation from

the Spline model in Figure 11, we see that the inferred

χeff distribution at low mass ratios (q ≲ 0.2) grows in

uncertainty, roughly recovering the prior. This implies

that any correlation inferred by the Linear model is

likely driven by observations with mass ratios q ≳ 0.2.

As such, the inferences from this model should be in-

terpreted with caution as q → 0, where the trend is

effectively being extrapolated from the more populated

q ≳ 0.2 region due to a lack of model flexibility.

We now move to the Copula model, which allows for

a correlation between q and χeff with a variable strength

κq,eff (see Appendix B.6). This framework has the added

advantage that the level of correlation is decoupled from

the shape of the marginal distribution (e.g., Adamcewicz

& Thrane 2022), with less flexibility for covariant struc-

ture relative to other correlated population models. Fit-

ting the Copula model to GWTC-4.0 suggests that q

and χeff are anti-correlated (κq,eff < 0) with 92% cred-
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Figure 11. The inferred peak (top) and width (middle)
of the χeff distribution as a function of mass ratio for the
(q, χeff) Linear model (blue) and Spline model (orange).
The shaded regions in these panels give the 90% credible
intervals. The bottom panel gives the posterior distribu-
tion for the gradient of the χeff distribution’s peak (δµeff|q)
and natural log width (δ lnσeff|q) dependent on mass ratio.
From dark to light, the shaded regions represent the 50%,
90% and 99% credible intervals. Again, blue gives the result
of the Linear model, while orange shows the result of the
Spline model sliced through q = 0.6 (the approximate point
at which the gradients are largest). It appears that mass
ratio and χeff exhibit some kind of correlation, but the exact
nature is unclear.

ibility. Specifically, we infer κq,eff = −2.1+2.4
−2.9. Adam-

cewicz et al. (2023) analyzed GWTC-3.0 data with a

copula model to find that (q, χeff) are anti-correlated

with > 99% credibility, suggesting greater evidence for

an anti-correlation than is measured here. However,

these results are not directly comparable to those pre-

sented in this work, due to different modeling assump-

tions and different convergence criteria in the population

likelihood. Qualitatively, we see that theCopulamodel

and Linear model exhibit a subtle anti-correlation in
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Figure 12. Mass ratio and χeff PPDs for the Cop-
ula model (blue) and Linear model (orange). The con-
tours, from dark to light, mark 50%, 90%, and 99% of the
volume. We see a subtle preference for an anti-correlation,
although this feature is far less prevalent than it appeared
in GWTC-3.0. We also see evidence for a broadening in the
distribution as mass ratios become more unequal in the Lin-
ear model. The Copula model is not flexible in a way that
it can capture a broadening.

(q, χeff), as seen in the respective two-dimensional PPDs

in Figure 12.

There are a number of potential astrophysical implica-

tions if the anti-correlation in (q, χeff) is real. If isolated

binaries make up a substantial fraction of the population

and undergo tidal spin up, stable mass transfer and the

resulting mass ratio reversal of systems (Broekgaarden

et al. 2022a; Zevin & Bavera 2022; Olejak et al. 2024)

may produce an such an anti-correlation in the popu-

lation. This feature could also be explained by binaries

undergoing a common-envelope phase provided common

envelope efficiencies are sufficiently high (Bavera et al.

2021).

Covariance in (q, χeff) could also be a result of hierar-

chical mergers contributing to a considerable fraction of

the BBH merger rate (Antonini et al. 2025b,a). Hierar-

chical mergers should exhibit mass ratios that are more

unequal and spin magnitudes that are larger than iso-

lated, or first-generation dynamical mergers. If hierar-

chical mergers occur in typical dynamical environments,

the spins of the BHs will be isotropically distributed,

thus producing a broadening in the χeff distribution as

mass ratios become unequal. Meanwhile, BHs in AGN

may have spins preferentially aligned with one another,

meaning hierarchical mergers in these environments can

produce a correlation between mass ratios and spins that

is asymmetrical about χeff = 0 (McKernan et al. 2022;

Santini et al. 2023). Stronger evidence for unequal mass

binaries preferring positive values of χeff could then in-
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dicate that binaries merging in AGN are predominantly

coaligned with the rotation of the AGN disk (Santini

et al. 2023).

6.5.2. Mass and Spin Correlations

We find model-dependent evidence for correla-

tions between m1 and χeff . Motivated by the feature

in the mass distribution around the ∼30−40M⊙ range,

we use a BGP analysis allowing for correlations in m1

and χeff (see Appendix C.2) to see if this feature in the

distribution of masses is accompanied by a deviation

in the BBH spin distribution. Using GWTC-4.0, these

studies find weak evidence that BBH systems with at

least one mass in the ∼30−40M⊙ peak tend to have

spins that are symmetrically distributed about χeff = 0,

while binaries outside of this mass range have spins

that are skewed toward positive (aligned) values of χeff .

Quantitatively, this BGP analysis infers that for every

merger in the ∼30−40M⊙ peak with a negative value

of χeff , there are 1.9+4.8
−1.2 with a positive value of χeff .

Meanwhile, for every event outside of this mass range

with a negative value of χeff , there are 6.6+14.1
−4.2 with a

positive value of χeff . We illustrate this result in the top

panel of Figure 13. Furthermore, in the BGP analysis

the inferred distribution of masses for BBH systems with

effective inspiral spins (|χeff | ≲ 0.1) exhibits a preference

for a larger proportion of mergers with m1 ∼ 30−40M⊙,
compared to systems with χeff ≳ 0.1. These distribu-

tions, however, remain consistent within 90% credible

intervals. This is illustrated in the bottom two panels

of Figure 13. These features were also recovered with

same analyses applied to GWTC-3.0 data, albeit with

less certainty (Ray et al. 2024). However, more recent

GWTC-3.0 analyses find conflicting evidence, suggest-

ing that the χeff distribution of ≈ 30M⊙ BHs is posi-

tively skewed (Sadiq et al. 2025b; Roy et al. 2025).

The Isolated Peak model (see also Godfrey et al.

2023) fits the data to a model containing multiple

mass subpopulations with independent spin distribu-

tions. One subpopulation consists of a single peak in

the mass distribution (which is inferred to center on

∼10M⊙), while other subpopulations are flexibly fit

with the B-Spline method. Applying these analyses to

GWTC-4.0 suggests that BHs within the ∼10M⊙ peak

have a spin magnitude distribution consistent (within

90% credibile intervals) with the rest of the BBH popu-

lation. Meanwhile, although there is some overlap in the

90% credibile regions of the cosine tilt distributions for

both subpopulations, the distribution of tilts for BHs

in the ∼10M⊙ peak favors alignment and is inconsis-

tent with isotropy. The distribution of cosine tilts for

BHs outside this mass peak appears more symmetrical
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Figure 13. Top: inferred distributions of effective inspiral
spin χeff in the correlated mass–spin BGP analysis. The solid
lines give the median, while the shaded regions indicate the
90% credible intervals. In blue, we have the χeff distribution
of BBH systems with at least one mass inside the 30−40M⊙
peak range. In orange, we have the χeff distribution of BBH
systems masses outside the 30−40M⊙ peak range. While
the two distributions are consistent within 90% credible in-
tervals, systems outside the peak range appear to favour
a distribution of χeff skewed toward more positive values.
Meanwhile, systems inside the peak range appear to favour
a more symmetrical distribution about χeff = 0. Middle:
inferred distributions of primary mass from the correlated
mass–spin BGP analysis. Bottom: inferred distributions of
secondary mass from the correlated mass–spin BGP analysis.
In both mass plots, blue shows the distribution for systems
with small spins, χeff in the range (−0.05, 0.05), while or-
ange shows the distribution for systems with larger spins,
χeff in the range (0.1, 0.2). Note the preference for a higher
proportion of mergers with masses ≈ 30−40M⊙ for low spin
systems (blue).



25

about cos θ = 0 and does not rule out isotropy. Roughly

speaking, this corresponds to a distribution of χeff that

may be symmetrical about zero for the BBH population

outside of the ∼10M⊙ peak. Inside this mass peak, how-

ever, the implied χeff distribution skews toward positive

values.

We also model a correlation between primary mass

and χeff using a copula model (see Appendix B.6). Fit-

ting this Copula model with GWTC-4.0 data, we in-

fer a correlation of κm1,eff = 0.4+1.6
−1.4 between m1 and

χeff . Hence, the Copula analysis finds no evidence for

a single, smooth, population-wide correlation between

primary mass and χeff .

Broadly, our analyses of the joint mass and spin dis-

tribution recover similar features to recent works that

probe for features in GWTC-3.0. First, analyses of

GWTC-3.0 do not find evidence for a smoothly corre-

lated distribution in primary mass and χeff (Safarzadeh

et al. 2020; Biscoveanu et al. 2022a; Fishbach et al. 2022;

Heinzel et al. 2024, 2025b; Antonini et al. 2025b), as is

the case in this work. Meanwhile, a number of anal-

yses find evidence for separate subpopulations in mass

and spin consistent with predictions of dynamical and

field mergers. More specifically, these works tend to find

a subpopulation with lower masses and smaller, mostly

aligned spins, and a second subpopulation of heavier bi-

naries with larger, isotropically distributed spins, where

the subpopulations transition around ∼40M⊙ (Wang

et al. 2022; Mould et al. 2022b; Godfrey et al. 2023; Li

et al. 2024; Antonini et al. 2025b; Pierra et al. 2024; Guo

et al. 2024; Li et al. 2025; Sadiq et al. 2025b). While the

analyses presented in this work do not recover this exact

feature (nor do they probe directly for it), the Isolated

Peak model’s preference for aligned spins at ∼10M⊙
and isotropically distributed spins at higher masses may

be related.

6.5.3. Redshift and Spin Correlations

We find evidence that the χeff distribution

broadens as redshift increases up to z ∼ 1. We

again look for correlations between redshift and χeff by

modeling the mean and width of the χeff distribution

with a linear dependence on redshift (see Appendix B.7).

Biscoveanu et al. (2022a) employed a Linear model for

(z, χeff) to analyze GWTC-3.0 data, finding no evidence

for redshift dependence in the mean of the χeff distribu-

tion, but suggesting that the χeff distribution broadens

with increasing redshift (δ lnσeff|z > 0 at 99% credibil-

ity). Updating this analysis to include O4a data, we find

more evidence for a broadening in the χeff distribution

with redshift, with δ lnσeff|z > 0 now inferred at > 99%

credibility. The mean and width of the χeff distribution

as functions of redshift are shown in Figure 14.

The Spline model, which models the redshift depen-

dence on the mean and width of the χeff distribution

flexibly with cubic splines (see Appendix B.8), is broadly

consistent with the Linear model. The exception is

that the Spline model tends to recover the prior be-

yond a redshift of z ≳ 1. This likely indicates that the

Linear model is fitting a trend at low redshifts, then

extending this trend to redshifts z ≳ 1 due to a lack

of flexibility. To further illustrate this point, the gray

dashed line in Figure 14 indicates the redshift under

which 90% of the catalog’s cumulative posterior sup-

port is contained. Roughly speaking, this means our in-

ferences above this redshift are informed by only ∼10%

of the data. Therefore, while we find evidence that the

χeff distribution broadens as binaries approach z ∼ 1,

we are unable to determine if this trend continues at

higher redshifts.

We also model a correlation between redshift and χeff

using a copula model, with variable correlation κz,eff

(see Appendix B.6). In contrast to the above analyses,

the Copula model finds evidence for a positive corre-

lation in (z, χeff), inferring a value of κz,eff = 4.6+3.0
−3.1

(or κz,eff > 0 with 98% credibility). While the Cop-

ula model lacks the flexibility to fit a broadening di-

rectly, the long (albeit shallow) posterior tails reach-

ing into both large-negative and large-positive values

for κz,eff may relate to the broadening in the χeff dis-

tribution recovered by the Linear and Spline mod-

els (see the subtle mode at negative values of κz,eff

in Appendix D.6). If the z-dependent broadening and

constant mean of the χeff distribution from the Lin-

ear and Spline models is to be believed, it is unclear

why the posterior on κz,eff skews toward positive values,

rather than being symmetric about zero.
It is unclear what this broadening in the χeff distri-

bution at greater redshifts might imply astrophysically.

Provided BH progenitors experience significant spin up

due to tidal torques, smaller orbital separations and pe-

riods will result in more efficient spin up of BBH com-

ponents (Zaldarriaga et al. 2018; Mapelli 2020; Bavera

et al. 2021, 2022; Fuller & Lu 2022). Of course, smaller

orbital separations correspond to shorter delay-times to

merger. This means that these systems may contribute

more to the merger rate in the earlier Universe (higher

z), where systems with wider orbits have not had time

to merge. Furthermore, given that higher metallicity

systems are expected to evolve to longer orbital peri-

ods due to experiencing more mass loss during core he-

lium burning (Qin et al. 2018; Fuller & Lu 2022), one

might predict that larger spin magnitudes should be ob-
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Figure 14. The inferred mean (top) and width (bot-
tom) of the χeff distribution as a function of redshift for
the Linear model (blue) and the Spline model (orange).
The shaded regions give the 90% credible intervals. The
gray dashed line indicates the redshift under which 90% of
the cumulative posterior probability lies across all events in
GWTC-4.0. Therefore, inferences above this redshift are
dominated by the prior or population model. Note the loga-
rithmic scale on the width (bottom panel). In either model,
we find evidence that the width of the effective inspiral spin
distribution increases with redshift up to z ∼ 1.

served in regions of lower metallicity and thus also at

higher redshifts. However, the correlation in the Lin-

ear and Spline models is between redshift and the

width of the χeff distribution rather than the mean.

This includes an increasing number of systems with both

large-positive and large-negative values of χeff . An in-

crease in systems with large-negative χeff may be some-

what difficult to square with the above hypothesis, given

that tidal spin up is only relevant in isolated systems,

and that large supernovae kicks are required to misalign

the BH spins so significantly (Kalogera 2000; Wysocki

et al. 2018; Gerosa et al. 2018; Callister et al. 2021a;

Steinle & Kesden 2021; Stevenson 2022; Tauris 2022;

Baibhav & Kalogera 2024). On the other hand, if the

Copula results are to be taken at face-value, the prefer-

ence for a positive correlation in (z, χeff) fits more neatly

with the aforementioned hypothesis.

Another possibility, following discussion from Sec-

tion 6.3, is that multiple separate subpopulations of

BBH mergers are being observed, where the more dom-

inant (in terms of redshift-dependent merger rate) sub-

population changes at some nearby redshift. Hierarchi-

cal mergers becoming more dominant at higher redshifts

for example could potentially explain such a broadening

in the effective spin distribution. This interpretation

would also imply some level of correlation between mass

and redshift, which we do not find evidence for below in

Section 6.5.4.

As a final caveat, using GWTC-3.0 data, Biscoveanu

et al. (2022a) fit the BBH population to a model in which

the χeff distribution is linearly dependent on both pri-

mary mass and redshift. In doing so, the authors find

degeneracies between the (m1, χeff) and (z, χeff) corre-

lations. While we do not explore correlations beyond

two dimensions in this work, we acknowledge that the

assumption of independence between other pairs of pa-

rameters may have notable effects on our inferences.

6.5.4. Redshift and Mass Correlations

Finally, we consider potential correlations between

BBH mass and redshift. We do not find evidence

for evolution in the mass distribution with red-

shift. We emphasize that these inferences are con-

strained to the nearby Universe, with relatively little

data beyond z ∼ 1 (19 out of 153 BBH events hav-

ing posteriors consistent with z > 1 to 90% credibil-

ity). We model correlations between primary mass and

redshift using a copula with correlation κm1,z (see Ap-

pendix B.6). Using thisCopulamodel, we infer a corre-

lation of κm1,z = 0.6+2.8
−2.6. We also search for correlations

between mass and redshift using a BGP analysis that

allows for covariance in m1 and z (see Appendix C.2).

Similarly, this analysis finds that the mass distribution

does not show a distinguishable evolution with redshift

(see Appendix D.6). This conclusion is mostly in line

with studies using GWTC-3.0, which are also unable

to infer any correlation between mass and redshift with

confidence (Fishbach et al. 2021; Sadiq et al. 2022; van

Son et al. 2022b; Karathanasis et al. 2023; Ray et al.

2023a; Heinzel et al. 2024, 2025b; Lalleman et al. 2025;

Sadiq et al. 2025a). This is with the exception of Rinaldi

et al. (2024) finding a positive correlation between BBH

primary mass and redshift, although a novel method is

used to account for selection effects.

7. CONCLUSION

In this paper, we present population-level analyses of

events included in the fourth Gravitational-Wave Tran-

sient Catalog GWTC-4.0. This dataset more than dou-

bles the number of events analyzed compared to the pre-

vious catalog. Our main findings are:

1. Features identified in the third catalog GWTC-3.0

persist, including clear overabudances in the mass

distribution at 1–2M⊙ and around 10M⊙, and a

feature near 35M⊙. There is no conclusive evi-
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dence to either support or refute a suppression of

the merger rate between these features.

2. We estimate the merger rates at redshift z = 0 to

be 7.6–250Gpc−3 yr−1 for binary neutron stars,

9.1–84Gpc−3 yr−1 for neutron star–black hole bi-

naries, 14–26Gpc−3 yr−1 for binary black holes.

3. The binary black hole primary mass distribution

is well described by a broken power law, shallow

at low masses and steep at high masses, modu-

lated by overdensities near 10M⊙ and 35M⊙. A

weakly modeled approach finds evidence of over-

density around 20M⊙.

4. Black holes in the 35M⊙ feature tend to pair with

companions of similar mass more frequently than

lower-mass black holes do.

5. The distribution of effective inspiral spins is asym-

metric about χeff = 0 and is skewed toward pos-

itive χeff values. Spin magnitudes span a broad

range from 0 to 1, although ∼90% of BHs have

χ < 0.57.

6. The redshift evolution of the binary black hole

merger rate R(z) remains consistent with the cos-

mic star formation rate density. A merger rate uni-

form in comoving volume and source-frame time is

ruled out.

7. We find that black holes outside the 30–40M⊙
range prefer an asymmetric effective inspiral spin

distribution skewed toward higher values, while

those within this range show no such preference.

Compared to GWTC-3.0, we observe stronger evi-

dence that the width of the effective spin distribu-

tion increases with redshift and weaker evidence

for an anti-correlation between mass ratio and ef-

fective spin. No redshift evolution is observed in

the mass distribution.

8. The neutron star mass distribution remain consis-

tent with previous results, favoring a broad distri-

bution of neutron star masses between 1M⊙ and

3M⊙.

The analysis of this expanded dataset refines the sta-

tistical significance of previously reported trends and re-

veals new features in the population of compact binary

mergers. Several of these findings, such as the persis-

tent ∼10M⊙ feature, pose challenges to current models

of supernova physics, binary mass transfer, and dynami-

cal formation in dense stellar environments. Future data

from the remainder of the fourth observing run O4 will

further enhance our understanding and may uncover ad-

ditional structure in the population.
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d’Educació i Universitats, the Conselleria d’Innovació,
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APPENDIX

A. HIERARCHICAL INFERENCE DETAILS

A.1. Likelihood Estimation

The analytic integrals in Equation (2) are not tractable, and so we estimate the integrals using Monte Carlo estimation

(Tiwari 2018; Farr 2019; Essick & Farr 2022; Talbot & Golomb 2023). For example, the estimator for the likelihood

L̂(di|Λ) is

L̂(di|Λ) ∝ 1

NPE

NPE∑

j=1

π(θij |Λ)

p(θij)
, (A1)

where {θij}NPE
j=1 are a collection of NPE samples from the posterior on the GW parameters of the ith event di. We

divide out by the parameter estimation prior p(θ), and so the Monte Carlo estimator in Equation (A1) converges to

the ith integral inside the product of Equation (2) in the limit of NPE → ∞.

Similarly, the estimator for the selection efficiency ξ̂ is (Tiwari 2018; Farr 2019; Essick & Farr 2022)

ξ̂(Λ) ∝ 1

Ndraw

Nfound∑

j=1

π(θj |Λ)

π(θj |Λdraw)
, (A2)

where Ndraw events with parameters θi are injected into representative noise from the detectors. The search pipelines

then search these synthetically generated data and recover some subset Nfound of the events with the detection statistic

exceeding some threshold. In the limit of Ndraw → ∞, this approaches the true integral in Equation (3).

Because we only have a finite number of samples from each event and finite Ndraw, we must be careful to account for

the intrinsic variance in the estimation of the likelihood. To be sure our Monte Carlo estimators for the likelihood are

trustworthy, we study the impact of Monte Carlo uncertainty in every inference we perform. Specifically, we compute

the variance in the log-likelihood estimator, which varies across parameter space due to our resampling techniques in
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Equation (A1) and Equation (A2). Propagating the uncertainty in the log-likelihood along independent degrees of

freedom, the variance in the log-likelihood estimator σ2
ln L̂ in combining Equation (2), Equation (3), and Equation (A1)

can be estimated as (e.g., Essick & Farr 2022)

σ2
ln L̂(Λ) =

Ndet∑

i=1

σ2
L̂i
(Λ)

L̂i(Λ)2
+N2

detσ
2
ξ (Λ), (A3)

where

σ2
L̂i
(Λ) =

1

NPE


 1

NPE − 1

NPE∑

j=1

(
π(θij |Λ)

p(θij)

)2

− L̂i(Λ)2


 (A4)

is the Monte Carlo variance in the single event Monte Carlo integrals of Equation (A1) and

σ2
ξ (Λ) =

1

Ndraw


 1

Ndraw − 1

Nfound∑

j=1

(
π(θj |Λ)

p(θj |Λdraw)

)2

− ξ̂(Λ)2


 (A5)

is the variance in the detection efficiency Monte Carlo integral of Equation (A2). When the rate-marginalized likelihood

of Equation (4) is used, σ2
ln L̂ takes a slightly different form

σ2
ln L̂(Λ) =

Ndet∑

i=1

σ2
L̂i
(Λ)

L̂i(Λ)2
+N2

det

σ2
ξ (Λ)

ξ̂(Λ)2
. (A6)

It has been shown that GW population inference can be biased when the variance in log-likelihood estimator exceeds

1. Consequently, we adopt a threshold on σ2
ln L̂ of 1 to manage the bias of the posterior. Above this threshold the

likelihood estimate may not be converged, and thus we ignore posterior samples with variances above this chosen

threshold. Equation (A3) describes the pointwise variance in the estimation of the log-likelihood. However, for

accurate sampling of the posterior we only require that the difference of log-likelihoods to be small. A small pointwise

log-likelihood variance is sufficient for the variance of the difference of log-likelihoods to be small but not necessary,

rendering our threshold conservative (Farr 2019; Essick & Farr 2022). Indeed, for some models, a large region of

hyperparameter space is removed by this threshold, limiting the range of potential populations that can be explored; for

an example, see Appendix D.3. Improvements to likelihood estimation are an active area of ongoing research (Wysocki

et al. 2019; Doctor et al. 2019; Delfavero et al. 2021; Golomb & Talbot 2022; Mould et al. 2024; Hussain et al. 2024;

Mancarella & Gerosa 2025).

A.2. Sampling Techniques

In each model, we draw samples from the posterior to study the population distributions consistent with the data and

the population model. We draw samples using a variety of stochastic sampling algorithms, where the exact approach

depends on the model. For most strongly modeled approaches, we use the nested sampler Dynesty (Speagle 2020)

wrapper in Bilby (Ashton et al. 2019), and the GWPopulation implementation of the hierarchical likelihood (Talbot

et al. 2025a).

However, our weakly modeled approaches tend to have a large number of hyperparameters and so have a high

dimensional posterior. Nested sampling struggles with high dimensional distributions, so we use the Hamiltonian

Monte Carlo (HMC) adaptive No-U-Turn Sampler (NUTS) implementation in NumPyro (Phan et al. 2019; Bingham

et al. 2019). The NumPyro adaptive NUTS requires an autodifferentiable implementation of the likelihood, which

we write in Jax (Bradbury et al. 2018). This gradient information allows the NUTS algorithm to efficiently explore

high dimensional posteriors.

B. SUMMARY OF MODELS USED IN THE STRONGLY MODELED APPROACH

B.1. Mass Model for the Full CBC Population

Our strongly modeled FullPop-4.0 mass model is based on Power Law+Dip (Fishbach et al. 2020), Broken

Power Law + Dip (Farah et al. 2022), and MultiPDB (Mali & Essick 2025). It is also similar to the Power
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Law+Dip+Break model (Abbott et al. 2023a), but in our FullPop-4.0 model we now include additional structure.

We allow for the possibility of an upper mass gap, as well as separate pairing functions for NS-containing binaries

and BBHs. Additionally, we include explicit peaks at low and mid-range BH masses to capture the ∼ 9–10M⊙ and

∼ 30–40M⊙ features found by the weakly modeled approaches. As discussed in Section 4, we find that the addition

of a low-mass BH peak eliminates the need to explicitly model a gap between NSs and BHs masses.

Our mass model is parameterized as

π(m1,m2|Λ) ∝ πm(m1|Λ)πm(m2|Λ)f(m1,m2)Θ(m2 < m1) (B7)

where the one-dimensional mass distribution πm(m|Λ) is given by

πm(m|Λ) = [1 + c1N[mmin,mmax](m|µ1, σ1) + c2N[mmin,mmax](m|µ2, σ2)]n1(m |mNSmax,mBHmin, ηNSmax, ηBHmin, A)

×n2(m |mUMGmin,mUMGmax, ηUMGmin, ηUMGmax, A2)h(m |mNSmin, ηNSmin)l(m |mBHmax, ηBHmax)

×





mα1 if m < mNSmax

mαdipm
α1−αdip

NSmax if mNSmax ≤ m < mBHmin

mα2m
α1−αdip

NSmax m
αdip−α2

BHmin if m ≥ mBHmin.

(B8)

This πm(m|Λ) represents a universal mass function to describe the primary and secondary mass distributions. Note

that the marginal mass distribution is different from the universal mass distribution due to the pairing formalism.

N[a,b](µ, σ) represents a truncated normal distribution over [a, b] with location and width parameters µ and σ. The

high-pass, low-pass and notch functions are defined as follows:

l(m|mBHmax, ηBHmax) =

[
1 +

(
m

mBHmax

)ηBHmax
]−1

, (B9)

h(m|mNSmin, ηNSmin) = 1− l(m|mNSmin, ηNSmin), (B10)

n1(m|mNSmax,mBHmin, ηNSmax, ηBHmin, A) = 1−Al(m|mNSmax, ηNSmax)h(m|mBHmin, ηBHmin), (B11)

n2(m|mUMGmin,mUMGmax, ηUMGmin, ηUMGmax, A2) = 1−A2l(m|mUMGmin, ηUMGmin)h(m|mUMGmax, ηUMGmax).

(B12)

(B13)

The pairing function

f(m1,m2|βBH, βNS) =





(
m2

m1

)β1

if m2 < 5M⊙
(
m2

m1

)β2

if m2 > 5M⊙

(B14)

controls how much merging binaries favor/disfavor equal masses. We allow for alternative pairing for binaries with

very light secondary masses (NSBHs or BBH with the secondary component in the lower-mass gap, e.g., GW190814

Abbott et al. 2020e). We show the priors and describe the parameters of the FullPop-4.0 model in Table 4.

B.2. Neutron Star Mass Models

Following previous work (Landry & Read 2021; Abbott et al. 2023a), the mass distribution of NS-containing events is

modeled as

π(m1,m2|Λ) ∝




π(m1|Λ)π(m2|Λ) if BNS,

U(3M⊙, 60M⊙)π(m2|Λ) if NSBH,
(B15)

To model π(m|Λ), we use either of the following models
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Table 4. Summary of FullPop-4.0 model parameters and priors.

Category Parameter Unit Description Prior

Pairing Function β1 – Spectral index below 5M⊙ U(−2, 3)

β2 – Spectral index above 5M⊙ U(−2, 7)

Broken Power-Law α1 – Powerlaw below mNS max U(−10, 2)

αdip – Powerlaw between mNS max and mBH min U(−3, 2)

α2 – Powerlaw above mBH min U(−3, 2)

mbrk M⊙ Break point between α1 and α2 5

Highpass Filter mNS min M⊙ Low-mass roll-off U(1, 1.4)

ηmin – Sharpness at mNS min 50

Lowpass Filter mBHmax M⊙ High-mass roll-off U(60, 200)

ηmax – Sharpness at mBHmax U(−4, 12)

Low-Mass Notch mNS max M⊙ Lower notch edge U(1.4, 5)

ηlow
1 – Sharpness at mNS max 50

mBH min M⊙ Upper notch edge U(5, 9)

ηhigh
1 – Sharpness at mBH min 50

A1 – Notch depth 0

High-Mass Notch mUMGmin M⊙ Lower notch edge U(30, 90)

ηlow
2 – Sharpness at mUMGmin 30

mUMGmax M⊙ Upper notch edge U(60, 150)

ηhigh
2 – Sharpness at mUMGmax 30

A2 – Depth of high-mass notch U(0, 1)

Low-Mass Peak µpeak
2 M⊙ Peak location U(6, 12)

σpeak
2 M⊙ Peak width U(0, 5)

c2 – Peak height U(0, 500)

High-Mass Peak µpeak
1 M⊙ Peak location U(17, 50)

σpeak
1 M⊙ Peak width U(4, 20)

c1 – Peak height U(0, 1000)

Note—U(x, y) denotes a Uniform prior between x and y.

Table 5. Summary of Power and Peak NS mass model parameters.

Parameter Unit Description Prior

α – Spectral index for the power-law in the Power NS mass distribution. U(−15, 5)

mmin M⊙ Minimum mass of the NS mass distribution. U(1.0, 1.5)

mmax M⊙ Maximum mass of the NS mass distribution. U(1.5, 3.0)

µ M⊙ Location of the Gaussian peak in the Peak NS mass distribution. U(1.0, 3.0)

σ M⊙ Width of the Gaussian peak in the Peak NS mass distribution. U(0.01, 2.00)

Note—U(x, y) denotes a Uniform prior between x and y.
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1. Power model:

π(m|Λ) ∝




mα if mmin ≤ m ≤ mmax,

0 otherwise.
(B16)

2. Peak model:

π(m|Λ) ∝




exp

[
− (m− µ)2

2σ2

]
if mmin ≤ m ≤ mmax,

0 otherwise.

(B17)

See Table 5 for a description of the parameters used in the model and the corresponding prior ranges.

B.3. Binary Black Hole Mass Models

Broken Power Law + 2 Peaks: The fiducial BBH mass model is a mixture between a broken power law and

two left-truncated Gaussian peaks, with low mass tapering applied to the full distribution. The broken power law is

given by

pBP(m1|α1, α2,mbreak,m1,low,mhigh) =
1

N





(
m1

mbreak

)−α1

m1,low ≤ m1 < mbreak

(
m1

mbreak

)−α2

mbreak ≤ m1 < mhigh,

(B18)

where α1 and α2 are the power law indices, the transition between the low-mass and high-mass power law occurs at

mbreak, and the normalization constant is

N =
mhigh(mhigh/mbreak)

−α2 −mbreak

1− α2
+

mhigh(mhigh/mbreak)
−α1 −mbreak

1− α1
. (B19)

The full mixture distribution π(m1|Λ) is

π(m1|Λ) ∝
[
λ0pBP(m1|α1, α2,mbreak,m1,low,mhigh) + λ1Nlt(m1|µ1, σ1, low = m1,low) (B20)

+ (1− λ0 − λ1)Nlt(m1|µ2, σ2, low = m1,low)

]
S(m1|m1,low, δm,1),

where Nlt is a left-truncated normal distribution. The Planck tapering function S ensures a smooth turn-on of the

distribution in the range (m1,low,m1,low + δm,1] and is given by

S(m|mlow, δm) =





0 m < mlow,

[1 + f(m−mlow, δm)]−1 mlow ≤ m < mlow + δm,

1 mlow + δm ≤ m,

(B21)

with

f(m′, δm) = exp

(
δm
m′ +

δm
m′ − δm

)
.

We model the mass ratio as a power law with index βq and low-mass tapering applied to secondary mass m2,

conditioned on primary mass m1,

pPL(q|m1, βq,m2,low, δm,2) ∝ qβqS(m1q|m2,low, δm,2), (B22)

with the same tapering function defined above. We numerically normalize the mass ratio distribution as a function of

primary mass, and interpolate the normalization to arbitrary primary masses with a log-uniform grid across primary
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Table 6. Summary of Broken Power Law + 2 Peaks model parameters and priors.

Parameter Description Prior

α1 Spectral index of 1st primary mass power law U(−4, 12)

α2 Spectral index of 2nd primary mass power law U(−4, 12)

mbreak Power law break location U(20, 50)

µ1 Location of the first peak U(5, 20)

σ1 Width of the first peak U(0, 10)

µ2 Location of the second peak U(25, 60)

σ2 Width of the second peak U(0, 10)

m1,low Lower edge of taper function see (B23)

δm,1 Mass range of low mass tapering U(0, 10)

λ0, λ1 Mixing fractions between power law and peaks Dir(α = (1, 1, 1))

mhigh Maximum mass for distribution, which is pinned to mhigh = 300M⊙ by default δ(mhigh − 300)

βq Spectral index of mass ratio power law U(−2, 7)

m2,low Lower edge of taper function in m2 see (B23)

δm,2 Mass range of low mass tapering in m2 U(0, 10)

Note—The priors for the Extended Broken Power Law + 2 Peaks model are the same except for the βq

parameters, which assume a prior of U(−10, 10).

mass. We define m2 ≤ m1, and therefore must enforce m2,low ≤ m1,low. We use a prior which is uniform in the two

dimensional triangular space satisfying the inequality and between 3 and 10M⊙. Specifically, this defines the priors

π(m1,low) =
2

(max−min)2
(m1,low −min), (B23)

π(m2,low|m1,low) =
1

m1,low −min
,

where min = 3M⊙,max = 10M⊙. The priors used in this model can be found in Table 6.

Extended Broken Power Law + 2 Peaks: This model incorporates correlations between the primary mass

and mass ratio, by allowing each primary mass mixture component in the Broken Power Law + 2 Peaks to be

associated with a separate power law mass ratio model. In terms of the functions defined above, the model is expressed

as

π(m1, q|Λ) ∝
[
λ0pBP(m1|α1, α2,mbreak,m1,low,mhigh)pPL(q|m1, β

BP
q ,mBP

2,low, δ
BP
m,2) (B24)

+ λ1Nlt(m1|µ1, σ1, low = m1,low)pPL(q|m1, β
peak1
q ,mpeak1

2,low , δpeak1m,2 )

+ (1− λ0 − λ1)Nlt(m1|µ2, σ2, low = m1,low)pPL(q|m1, β
peak2
q ,mpeak2

2,low , δpeak2m,2 )

]
S(m1|m1,low, δm,1),

where the superscripts (BP, peak1, and peak2) denote the different mass ratio hyperparameters (βq, m2,low, δm,2) for

the broken power law, first Gaussian, and second Gaussian components. The priors on these hyperparameters are the

same as those used in the Broken Power Law + 2 Peaks model, listed in Table 6, except for the power law index

parameters βq, which assume U(−10, 10).
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Table 7. Summary of Power Law Redshift model parameter and prior.

Parameter Description Prior

κ Power-law index on comoving merger rate evolution U(−10, 10)

B.4. Power Law Redshift Model

We model redshift evolution by the comoving merger rate density (Equation 5). In particular, we use the model

π(z|κ) ∝ 1

1 + z

dVc

dz
(1 + z)κ (B25)

where the prefactor converts from a rate density in comoving volume and source frame time to detector frame time

and redshift. In other words, the comoving rate density scales as R ∝ (1 + z)κ. We use a prior on κ as specified in

Table 7.

B.5. Spin Models

BBH spins can be parameterized in several ways which are useful for GW data analysis. Here, we use dimensionless

spin magnitudes for the BHs χ1 and χ2, and cosine tilt angles cos θ1 and cos θ2, as well as the effective spin parameters

χeff (Racine 2008; Ajith et al. 2011; Damour 2001) and χp (Schmidt et al. 2011, 2012, 2015). The effective inspiral spin

χeff used because it is typically the most precisely measured BBH spin parameter, due to its lower-order appearance

post-Newtonian expansions (Arun et al. 2009). Other parametrizations of spin precession exist (e.g., Fairhurst et al.

2020; Gerosa et al. 2021; Thomas et al. 2021) but for reasons of convention, we only work with the typical parameter-

ization given in Equation 16 of Abac et al. (2025a). When modeling the effective spins, we use the analytic per-event

parameter-estimation prior on χeff , χp, and q (Iwaya et al. 2025) in the calculation of the hierarchical likelihood

(Equation 2). For all models presented in this work, we assume that azimuthal angles ϕi are distributed uniformly

between 0 and 2π—the same as their parameter estimation prior—due to their typically uninformative individual-event

posteriors. See Table 3 of Abac et al. (2025a) for more information about spin parameters.

We report results with spin vectors defined at the reference frequencies used for inference on each signal (Abac et al.

2025b). The effective spin χeff is approximately conserved throughout the inspiral (Racine 2008; Gerosa et al. 2015),

so its population distribution should be unaffected by the choice of reference frequency. While the effective precessing

spin χp and the spin angles are dependent on reference frequency, they are comparatively weakly constrained by the

data. Additionally, their parameter estimation priors are invariant under time evolution, meaning measurements are

robust against different reference frequencies. At the current number of events and because of model dependence while

measuring tilt distributions, we do not expect significant differences between the inferred tilt or χp distributions at

different reference frequencies (Mould & Gerosa 2022). Our approach is consistent with past LVK analyses, where

evolved spins have not been used (Abbott et al. 2019a, 2021a, 2023a).

B.5.1. Component Spin Models

Gaussian Component Spins: We model the spin magnitudes (χi) as a truncated Gaussian distribution between

0 and 1, assuming they are identically and independently distributed:

π(χi|µχ, σχ) = N[0,1](χ1|µχ, σχ)N[0,1](χ2|µχ, σχ) . (B26)

This choice attempts to rectify shortcomings of the non-singular Beta distribution used to model the spin magnitudes

in previous work (Abbott et al. 2019a, 2021a, 2023a); see Equation (B29) below. The non-singular Beta distribution

is forced to go to π(χ) = 0 at χ = 0, 1, which crucially does not allow for measurements of contributions to the

population at χ = 0 or χ = 1, even though non-trivial contributions may exist (Callister et al. 2022; Galaudage et al.

2021; Hussain et al. 2024). Allowing the Beta distribution to be singular would add limited additional model flexibility,

only adding the option for π(χ) = ∞ at the χ = 0, 1, but not anywhere in between 0 and ∞. Thus, we opt for the

truncated Gaussian model, which can take on a continuous range of values at χ’s boundaries.
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Table 8. Summary of Gaussian Component Spins model parameters for spin magnitudes
(Equation B26) and tilt angles (Equation B27, B28).

Parameter Description Prior

µχ Location of the χ distribution U(0, 1)

σχ Width of the χ distribution U(0.005, 1)

µt Location of the Gaussian component of the cos θ distribution U(−1, 1)

σt Width of the Gaussian component of the cos θ distribution U(0.01, 4)

ζ Fraction in the Gaussian component of the cos θ distribution U(0, 1)

tmin Minimum of the cos θ distribution U(−1, 1)

Note—U stands for a uniform prior.

We model the distribution of the cosine spin tilt angle (cos θi) as a mixture between a Gaussian distribution truncated

on −1 to 1 and an isotropic distribution, assuming they are identically but not independently distributed:

π(cos θi|µt, σt, ζ) = ζN[−1,1](cos θ1|µt, σt)N[−1,1](cos θ2|µt, σt) +
1− ζ

4
. (B27)

We here allow for the location of the Gaussian sub-population to vary, following Vitale et al. (2022), rather than fixing

it at µt = 1 as was done in previous work (Abbott et al. 2019a, 2021a, 2023a). Priors on the Gaussian Component

Spins hyperparameters are given in Table 8.

Minimum Tilt Model: For the spin tilts, we also use a model in which tmin (where t ≡ cos θ), a hard lower

truncation of π(cos θ), is informed by the data. In this case the population distribution becomes

π(cos θi|µt, σt, ζ, tmin) =




ζN[tmin,1](cos θ1|µt, σt)N[tmin,1](cos θ2|µt, σt) +

1− ζ

(1− tmin)2
cos θi > tmin ,

0 cos θi ≤ tmin .

(B28)

Equation (B27) is the same as Equation (B28) with tmin = −1. The prior on tmin and other hyperparameters are given

in Table 8.

Beta Distribution Spin Magnitude: In Appendix D.2, we compare the Gaussian Component Spins model

to alternatives. For the spin magnitudes, these are the Constrained and Unconstrained Beta Distributions, which both

follow the form:

π(χi|α, β) ∝ χi
α−1(1− χi)

β−1
. (B29)

The Constrained Beta was the Default model for GWTC-3.0 (Abbott et al. 2023a) and requires the shape parameters

α, β > 1, which forces π(χi = 0, 1) = 0 (Wysocki et al. 2019; Abbott et al. 2021a). The Unconstrained Beta relaxes

this constraint on the the shape parameters. If 0 < α, β < 1, the Beta distribution becomes singular, meaning

π(χi = 0, 1) = ∞. Following Abbott et al. (2023a), we sample the mean and standard deviation of the Beta distribution,

rather than α and β, and use the same priors for µχ and σχ as given in Table 8 for the Gaussian Component Spins

model. For the Constrained Beta case, we additionally impose the cut α, β > 1. The relationship between {µχ, σχ}
and {α, β} is given in Equation 5 of Abbott et al. (2019a).

B.5.2. Identical versus Non-identically Distributed Spin Magnitudes and Tilts

In Appendix D.2, we investigate whether or not the primary and secondary spins are identically distributed, assuming

the Gaussian Component Spins model. Identical distribution means that the two distributions share the same set

of hyperparameters, while non-identical means that each is described by different hyperparameters. Spin magnitudes

are also independently distributed, meaning that π(χ1, χ2) is separable in terms of χ1 and χ2. The acronym IID means

they are independently and identically distributed, while IND means independently and non-identically distributed:

χi IID =⇒ π(χ1,2|µχ, σχ) = N[0,1](χ1|µχ, σχ)N[0,1](χ2|µχ, σχ) , (B30)

χi IND =⇒ π(χ1,2|µχ,1, σχ,1, µχ,2, σχ,2) = N[0,1](χ1|µχ,1, σχ,1)N[0,1](χ2|µχ,2, σχ,2) . (B31)
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Table 9. Summary of Gaussian Effective Spins (Equation B36) and Skew-normal
Effective Spin (Equation B37) spin parameters.

Parameter Description Prior G Prior SN

µeff Location of the χeff distribution U(−1, 1) U(−1, 1)

σeff Width of the χeff distribution U(0.05, 1) LU(0.01, 4)

µp Location of the χp distribution U(0.05, 1) U(0.01, 1)

σp Width of the χp distribution U(0.07, 1) LU(0.01, 1)

ρ Degree of correlation between χeff and χp U(−0.75, 0.75) N/A

ϵ Skew of the χeff distribution N/A U(−1, 1)

Note—The first column of priors (G) gives those used for the Gaussian Effective
Spins results, the second column (SN) is Skew-normal Effective Spin. U stands for
a uniform prior; LU for log-uniform.

The tilt angles, on the other hand, are non-independently distributed, meaning that π(cos θ1, cos θ2) is not separable.

The acronynm NID means they are non-independently but identically distributed, while NNDmeans non-independently

and non-identically distributed:

cos θi NID =⇒ π(cos θ1,2|ζ, µt, σt) = ζN[−1,1](cos θ1|µt, σt)N[−1,1](cos θ2|µt, σt) +
1− ζ

4
, (B32)

cos θi NND =⇒ π(cos θ1,2|ζ, µt,1, σt,1, µt,2, σt,2) = ζN[−1,1](cos θ1|µt,1, σt,1)N[−1,1](cos θ2|µt,2, σt,2) +
1− ζ

4
. (B33)

For the non-identically distributed cases, each component’s hyperparameters have the same priors as those listed in

Table 8 for the identically distributed case. Table 12 gives Bayes factors between different combinations of IID/IND

spin magnitudes and NID/NND spin tilts; see associated dicsussion in Appendix D.2.

B.5.3. Effective Spin Models

Gaussian Effective Spins: We here assume that the distribution of χeff and χp across the BBH population is a

bivariate truncated Gaussian (Miller et al. 2020; Roulet & Zaldarriaga 2019) characterized by the location and width

of the χeff and χp distributions, and the covariance between them:

π(χeff , χp|µ,Σ) ∝ N (χeff , χp|µ,Σ) , (B34)

where µ = (µeff , µp) and

Σ =

(
σ2
eff ρ σeff σp

ρ σeff σp σ2
p

)
. (B35)

This expands to:

π(χeff , χp|µ,Σ) ∝ exp

[
− 1

2(1− ρ2)

(
(χeff − µeff)

2

σ2
eff

− 2ρ(χeff − µeff)(χp − µp)

σeffσp
+

(χp − µp)
2

σ2
p

)]
. (B36)

The bivariate Gaussian is truncated over the range χeff ∈ [−1, 1], χp ∈ [0, 1] and is normalized numerically. Priors on

the hyperparameters are given in Table 9.

Skew-normal Effective Spin: To account for observational evidence that the χeff distribution is not symmet-

ric (Callister et al. 2021b; Adamcewicz & Thrane 2022; Banagiri et al. 2025), we additionally model χeff as a skewed,

truncated Gaussian distribution:

π(χeff |µeff , σeff , ϵ) ∝




(1 + ϵ)N[−1,1](χeff |µeff , σeff(1 + ϵ)) χeff ≤ 0 ,

(1− ϵ)N[−1,1](χeff |µeff , σeff(1− ϵ)) χeff ≥ 0 .
(B37)



37

Table 10. Summary of parameters exclusive to the Copula, Linear, and Spline correlated models,
along with their priors.

Parameter Description Prior

κx,y Level of correlation between parameters x and y inferred with a copula U(−20, 20)

µeff|q q = 1 intercept in linear µeff(q) U(−1, 1)

δµeff|q Gradient in linear µeff(q) U(−2, 2)

lnσeff|q q = 1 intercept in linear lnσeff(z) U(−5, 0)

δ lnσeff|q Gradient in linear lnσeff(q) U(−12, 4)

µeff|z z = 0 intercept in linear µeff(z) U(−1, 1)

δµeff|z Gradient in linear µeff(z) U(−1, 1)

lnσeff|z z = 0 intercept in linear lnσeff(z) U(−5, 0)

δ lnσeff|z Gradient in linear lnσeff(z) U(−3, 5)

µi
eff|q ith node in spline µeff(q) U(−1, 1)

lnσi
eff|q ith node in spline lnσeff(q) U(−5, 0)

µi
eff|z ith node in spline µeff(z) U(−1, 1)

lnσi
eff|z ith node in spline lnσeff(z) U(−5, 0)

Note— There are four variations of the Copula model in which (x, y) = (q, χeff), (m1, χeff), (z, χeff)
and finally, (m1, z). Within the spline models, we use four nodes i.

This model includes a parameter ϵ which describes the skew of the distribution, such that ϵ > 0 characterizes a

distribution with more support for χeff < µeff , while ϵ < 0 has more support when χeff > µeff . The Skew-normal

Effective Spin distribution reduces to a standard, symmetric Gaussian in the case that ϵ = 0. We here model χp as

a truncated normal distribution and infer its location and width. Priors on the hyperparameters are given in Table 9.

B.6. Copula Correlation Models

Copulas allow for a variable correlation between two parameters x and y while keeping the marginal distributions

for the respective parameters fixed. This is done using the fact that the cumulative distribution function (CDF) of any

randomly distributed variable is itself a uniformly distributed variable between 0 and 1, in order to model the CDFs of

x and y with a correlated two-dimensional uniform distribution. This correlated two-dimensional uniform distribution,

known as a copula density function, is dependent on a (hyper)parameter κx,y, which determines the level (or strength)

of the correlation. A coordinate transformation (which is determined by the chosen marginal distributions for x

and y) can then be applied to provide a correlated two-dimensional model in the desired coordinates. Conveniently,

the Jacobian for this transformation turns out to be the product of the chosen marginal distributions, meaning the

two-dimensional population model can be written as

πxy(x, y|Λ, κx,y) = πc (u(x|Λ), v(y|Λ)|κx,y)πx(x|Λ)πy(y|Λ). (B38)

Here, Λ are the set of hyperparameters governing the marginal distributions πx and πy, while πc denotes the chosen

copula density function. Finally,

u(x|Λ) =

∫ x

xmin

dx′ πx(x
′|Λ), (B39)

and

v(y|Λ) =

∫ y

ymin

dy′ πy(y
′|Λ), (B40)

which we refer to as u and v for the sake of brevity, are the CDFs of x and y respectively.

The Copula models all assume the same marginal distributions and copula density functions, but differ in which

pairs of parameters they correlate (i.e., which parameters u and v are functions of in the above notation). Namely,
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the mass distribution is assumed to follow the default Broken Power Law + 2 Peaks model, redshift follows the

default power-law redshift model, and χeff and χp are Gaussian distributed, but uncorrelated (i.e., they follow the

Gaussian Effective Spins model with ρ = 0). We assume a Frank copula density function

πc (u, v|κx,y) =
−κx,ye

−κx,y(u+v)(e−κx,y − 1)
(
e−κx,y − e−κx,yu − e−κx,yv + e−κx,y(u+v)

)2 , (B41)

where κx,y ∈ (−∞,∞). Positive values of κx,y imply a correlation, while negative values of κx,y imply an anti-

correlation. The Frank copula density function is not defined at κx,y = 0, but becomes uncorrelated as κx,y → 0

from above and below, so we assume πc (u, v|κx,y = 0) = 1 (technically, making this a piece-wise function). The Frank

copula density function is chosen as it allows for positive and negative correlations that are symmetric about κx,y = 0,

and gives rise to correlated distributions that we believe appear physically reasonable (Adamcewicz & Thrane 2022;

Adamcewicz et al. 2023). The prior on κx,y (which is the same for all copula model variations), is given in Table 10.

Copulas are advantageous as they allow for a potential correlation to be quantified by a single variable κx,y, that

otherwise has no influence on the distribution of the population. However, relative to the linear and spline models

explored below, they suffer from a lack of flexibility when it comes to covariance. There are a limited number of copula

density functions available, all of which introduce a correlation in a unique, but rigid way (e.g, Adamcewicz & Thrane

2022; Adamcewicz et al. 2023). Furthermore, known two-dimensional copulas depend on a single parameter κx,y, and

cannot infer, for example, a separable broadening and correlation with the mean of a distribution simultaneously. As

a result, using copulas to probe for more complex structure in two-dimensions (assuming fixed marginal distributions),

requires model comparison between a number of different copula density functions (e.g., Adamcewicz et al. 2023).

B.7. Linear Correlation Models

The (q, χeff) and (z, χeff) Linear models begin by assuming that χeff is Gaussian distributed for any given value of

mass ratio q and redshift z respectively. As the two models are otherwise identical, for the remainder of this Section, we

substitute x for q and z. This parameter-dependent Gaussian distribution for χeff , π(χeff |x), is truncated at unphysical

values of |χeff | ≥ 1. From here, the mean and (natural log) width of the χeff distribution are allowed to evolve with

the chosen variable x linearly:

µeff(x) = µeff|x + δµeff|xx, (B42)

and

lnσeff(x) = lnσeff|x + δ lnσeff|x0
x. (B43)

Here, µeff|x, δµeff|x, lnσeff|x, and δ lnσeff|x0
are all hyperparameters fit to the data, where δµeff|x and δ lnσeff|x0

quantify

the strength of the correlation between x and the mean and width of the χeff distribution respectively. The priors for

these parameters are given in Table 10. Meanwhile, masses follow the default Broken Power Law + 2 Peaks model

and redshift is distributed according to the default power-law redshift model.

These models (in the style of those presented in Safarzadeh et al. 2020; Callister et al. 2021b; Biscoveanu et al. 2022a),

therefore allow us to infer separable trends in the mean and width of the χeff distribution with another parameter.

The inferred correlations should be interpreted with care as, unlike the copula models defined in Section B.6, the

correlation hyperparameters here will also affect the shape of the marginal χeff distribution. As such, it can be difficult

to be certain whether an inferred correlation is entirely due to a trend between χeff and another parameter, or is in

part due to a better fit to the marginal χeff distribution (Adamcewicz & Thrane 2022).

B.8. Spline Correlation Models

The Spline models (Heinzel et al. 2024) are similar to the Linear models defined in Section B.7. The key difference

is that the Spline models more flexibly model the parameter-dependent mean µeff(x) and (natural log) width lnσeff(x)

of the χeff distribution as cubic splines dependent on x. Each spline has four nodes µi
eff and lnσi

eff|x that are placed

uniformly in log10 x, and are inferred from the data. The priors for these nodes are given in Table 10.

C. SUMMARY OF MODELS USED IN THE WEAKLY MODELED APPROACH

We describe weakly modeled approaches—B-Spline, BGP, AR, FM—used in this work. Results in the main text

make use of B-Spline and BGP models. BGP was chosen since it was the only model capable of modeling the full

mass spectrum, while B-Spline was chosen for most BBH analyses for its ease of description and flexibility, as it
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simultaneously models all parameters with B-Splines. See Appendix D.4 for comparison of these weakly modeled

approaches.

C.1. B-Spline models

B-Spline: The B-Spline model (Edelman et al. 2023) simultaneously fits all population parameters with Basis-

splines (B-splines). A kth order B-spline of variable x consists of a linear combination of n basis functions {Bk,n(x)},
each of which are degree k− 1 piecewise polynomials joined at a set of m locations called knots {xm}. The number of

basis functions n defined across any range of x values is determined solely by the order of the spline k and the total

number of knots m as n = k +m. This forms a basis that spans the space of possible interpolants between the knots

{xm}. Given a vector of coefficients ααα, any function f can then be approximated as

f̃(x) =

n∑

i=1

Bk,i(x)αi. (C44)

In the case of this work, f is a probability distribution p(θ|αααθ) for a population-level parameter θ, where the B-spline

coefficients αααθ are the hyperparameters of the distribution that are inferred during parameter estimation.

Given an adequate number of knots, a B-spline is highly flexible and therefore capable of identifying sharp features

that could be present in the data. This does, however, naturally make the B-Spline model prone to overfitting. To

combat this, we include a smoothing prior πBS that penalizes large differences between neighboring coefficients. The

prior is defined as

p(ααα|τ) = exp

(
−1

2
ταααTDDDT

rDDDrααα

)
, (C45)

where Dr is the r-order difference matrix with shape (n− r)×n and τ is a scalar that controls the level of smoothing.

Ideally, τ is also inferred during parameter estimation. We found that τ consistently railed against prior boundaries,

which meant that the limits imposed on the likelihood uncertainty was the main driver of smoothness. We therefore

fix τ to a reasonable value (roughly between 5−10) for each population distribution. With a sufficient number of bases,

typically n ∼ 30−40, this penalty prior will prevent the B-spline from overfitting the data while the large number of

bases will provide enough flexibility to fit sharp features.

The mass and spin distributions are modeled as B-splines, and the redshift distribution is modeled as a power law

modulated by a B-spline (Edelman et al. 2023), with all components inferred simultaneously. One of the weakly

modeled approaches used in previous analyses (Abbott et al. 2023a) was the Powerlaw + Spline model. This

model assumed that the primary BBH mass followed a power-law distribution with moderate deviations controlled by

a cubic spline. The B-Spline model does not assume an underlying shape for the primary mass distribution, instead

allowing for full model flexibility.

The B-Spline model infers the separable components of the mass distributions, p(m1) and p(q), wherein the primary

mass is defined over the range 3−300M⊙ and the mass ratio is defined over the range 0.03−1. Unlike the Broken

Power Law + 2 Peaks model, a minimum secondary mass is not enforced during parameter estimation. To provide

a more direct comparison to the strongly modeled approach, the B-Spline mass distributions shown in Section 6.1 are

not the separable components p(m1) or p(q) but instead the marginal distributions conditioned on m2 > 3M⊙, that
is, p(q|m2 > 3M⊙) =

∫
p(q)p(m1)Θ(m1q − 3)dm1. We include the separable distributions along with the conditional

marginal distributions in the mass ratio plot in Figure 20 to illustrate how this assumption affects the shape of the

mass ratio distribution.

Isolated Peak: This model is defined by two subpopulations (Godfrey et al. 2023). One assumes a primary mass

distribution described by a log-Gaussian peak while the other infers the mass distribution with a B-spline. Mass ratio,

spin magnitude, and spin tilt distributions are inferred separately for each subpopulation, also using B-splines. The

redshift distribution is the same for each subpopulation and is inferred with a power law modulated by a B-spline.

C.2. Binned Gaussian Process (BGP) Model

In previous population analyses (Abbott et al. 2023a), we used the BGP model to study the joint distribution

of primary and secondary masses. Here, we extend it to model the joint distributions of mass, spin, and redshift.

The BGP approach models the rate of BBH, BNS and NSBH mergers as a piecewise constant function over a set of

fixed bins across the one-, two-, or three-dimensional joint space. The comoving merger rate density in each bin is a
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hyperparameter of the model. In addition, the BGP model couples the logarithm of the rate density in each bin with

a Gaussian process covariance, assuming an exponential quadratic kernel (also known as a radial basis function (RBF)

kernel). The exponential quadratic kernel has a hyper-hyperparameter length scale λ for each parameter in the joint

space.

The covariance between two bins is proportional to the exponential of the negative squared distance between the bin

centers, in units of the length scales along each parameter. In addition, there is one more hyper-hyperparameter σ,

which acts as an overall multiplicative scaling of the covariance matrix (Ray et al. 2023a). The BGP approach directly

infers the rate density in each bin, as well as the hyper-hyperparameters of the covariance kernel. The prior on the

parameter σ is a half-normal with width 1, and the length scale priors were tuned to the mean and variation in the

set of distances between the bin centers.

We used 22 bins spaced uniformly in log-mass for the mass BGP models, and 15 bins spaced uniformly between

χeff ∈ [−0.7, 0.7] for the effective spin BGP models.

The BGP approach has the advantage of being able to model nontrivial correlations in the population of compact

binaries. However, it assumes an arbitrary binning scheme, which reduces the resolution of the constraints and leads to

unphysical discontinuities at the boundary between bins. Furthermore, measurements of the rate density in some bins

may be driven by the a priori assumption of a Gaussian covariance, and not the data. This can also cause smoothing

near sharp features e.g., near the m1 = m2 boundary.

C.3. Autoregressive Process (AR) Model

The AR model (Callister & Farr 2024) is a highly flexible model for one dimensional marginal merger rate densities.

The Monte Carlo integrals for estimating the likelihood in Equation (2) involve a large set of parameter estimation

samples [Equation (A1)] and found injections for the selection efficiency [Equation (A2)]. The merger rate density at

each sample is its own hyperparameter, which is directly inferred from the data. Without any further assumptions,

such a model is severely underconstrained and will converge on the maximum likelihood functional distribution (Payne

& Thrane 2023). In order to a priori favor smoother distributions, this finite list of samples is ordered along the

dimension of interest like, for example, their primary mass. The marginal merger rate density is then assumed

to be an autoregressive Gaussian random walk in log-space. There are two hyper-hyperparameters, σAR and τAR,

which control the scale of variability and the autocorrelation length along the Gaussian random walk respectively.

These hyper-hyperparameters have half-normal and log-normal priors respectively, tuned to the scale of the data: see

Appendix B in Callister & Farr (2024) for details. These hyper-hyperparameters are jointly inferred along with the

logarithmic merger rate density at each sample.

The AR model is particularly well-suited to distributions with sharp features and nontrivial evolution, complementing

the BGP approach. However, the AR model used here cannot model correlations in the population. Furthermore,

as in the BGP approach, the inferred merger rate may extrapolate based off nearby constraints in regions of little

information. When evaluating uncertainties in the AR model, one should consider the impact of the AR smoothing
prior. In particular, lower bounds on the merger rate in some regions may not be an accurate lower bound on the true

distribution.

Like the B-Spline model, the AR model does not enforce a minimum secondary mass through a mass-dependent

mass ratio.

C.4. Flexible Mixtures (FM) Model

The FM model (Tiwari 2021) is a flexible mixture model framework for modeling the BBH population. FM models

the population as a Gaussian mixture model in chirp mass and aligned spins, and a power law in mass ratio and

redshift (Tiwari 2022). Furthermore, FM is able to model correlations between parameters in the population, and

additionally has a variable model dimension, sampling the trans-dimensional posterior using a reversible-jump MCMC

method. For the analyses presented here, FM uses 11 mixture components.

D. RESULT VALIDATION STUDIES

In the following sub-appendices, we describe various methods used to select and validate the data, models, and

approaches presented in the main text. In Appendix D.1 and Appendix D.2 we discuss the process for selecting

the fiducial mass and spin models, respectively, under the strongly modeled approach and present results from other

models which were under consideration. Appendix D.3 describes how the specific convergence cut biases the inferred
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Table 11. Bayes factor comparison of selected models from the
mass model comparison study.

Model Abbreviation log10 B
Broken Power Law + 2 Peaks ⋆ BP2P 0

Broken Power Law + 1 Peak BP1P −0.06

Broken Power Law + 3 Peaks BP3P −0.34

Power Law + Peak PP −2.43

effective spin distribution. In Appendix D.4, we compare various types of methods for the weakly modeled approach,

which were presented in Appendix C. Appendix D.5 gives compact object merger rates when sub-threshold triggers are

considered, i.e., using a lower FAR threshold. Finally, Appendix D.6 provides supplementary results for population-

level correlations between masses, spins, and redshifts.

D.1. Model Comparison Study: Mass

The fiducial mass model is a strongly modeled approach that is intended to provide a minimal but accurate description

of the data with a parametrization that is more readily interpretable than the weakly modeled approaches. Table 11

shows the Bayes factors between the models that performed the best in our study and our fiducial model Broken

Power Law + 2 Peaks. We also compare to our previous fiducial model from Abbott et al. (2023a), the Power

Law + Peak model. In Figure 15, we see that Power Law + Peak infers the peak component at 35M⊙, as in

Abbott et al. (2023a), but a broken power law plus 1 peak (BP1P) model infers the peak component at 10M⊙ and

the power law break at 35M⊙. In Table 11, we see that all models that include a broken power law are strongly

favored over the Power Law + Peak model. Among models with a broken power law, the Bayes factors do not

show strong support for one model over another. While Bayes factors are an important model comparison statistic to

consider, they can be influenced by prior assumptions. In the case of the models in Table 11 where Bayes factors are

not decisive, we ultimately chose as our fiducial model the model that was a minimal extension of the Power Law

+ Peak model and probed features shared among all of the weakly modeled approaches shown in Figure 20. The

Broken Power Law + 2 Peaks model best fit these criteria, though with some nuances that we discuss below.

In GWTC-3.0, the Power Law + Peak model identified an overdensity in the merger rate at m1 = 35+1.7
−2.9 M⊙

relative to a global power law. Evidence for this feature first appeared in Abbott et al. (2019a) and was strengthened

in Abbott et al. (2021a) and Abbott et al. (2023a). As mentioned in Section 6.1, this feature at 35M⊙ may be an

overdensity relative to an underlying mass continuum or could mark the onset of a decline in the merger rate. In
addition to the Bayes factor comparison shown in Table 11, this ambiguity is also present in the Broken Power

Law + 2 Peaks posterior, which includes two modes that correspond to two different morphologies, shown in Figure

16. The dominant mode is correlated with a narrower (σ2 = 3.1+2.7
−2.0 M⊙) peak at µ2 = 33+2.8

−2.1 M⊙ and accounts for

71% of the posterior volume, while the subdominant mode is correlated with a wider (σ2 = 7.3+2.3
−2.5 M⊙) peak at

µ2 = 29+2.9
−3.6 M⊙ and accounts for 29% of the posterior volume. This latter mode has a morphology nearly identical

to the inferred BP1P distribution (see Figure 16). The inflection point of the Gaussian, µ2 + σ2 = 37+3.7
−3.0 M⊙, is

consistent between both modes, which indicates that the right half of the Gaussian must fall below the power law to

match the declining rate in this region (the gray vertical shaded region in Figure 16).

The power law indices, α1 and α2 are not correlated with the two modes present in the BP2P posterior, though the

measured slope of the mass distribution between 18−19M⊙ is not equivalent to α1 in the subdominant mode. In this

mode, the slope (calculated by finite difference) is 0.72+1.4
−1.7, which includes more support for negative values compared

to the inferred power law index, α1 = 1.7+1.4
−1.9. We infer the power law break location at mbreak = 36+12

−13 M⊙. The

BP1P model, which does not include a second Gaussian component, measures the break location much more precisely

at mbreak = 34.1+3.8
−3.3 M⊙. The uncertainty in the BP2P power law break is due to the presence of the second Gaussian

component, which likely obscures the break most of the time. Because the peak is narrower in the dominant BP2P

mode, one might expect the break location to be better constrained in this mode; however, this is not the case. The

break location does not appear to be correlated with either mode.
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Figure 15. Inferred mass distributions of various strongly modeled approaches compared to the fiducial mass model Broken
Power Law + 2 Peaks (gray shaded) and the B-Spline model (black dashed). The fiducial model from GWTC-3.0, Power
Law + Peak, is shown in orange, a broken power law with a single peak in blue, and a broken power law with three peaks in
pink.
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Figure 16. Differential merger rate as a function of primary mass (evaluated at z = 0.2) of the two different modes recovered
by the Broken Power Law + 2 Peaks model. The orange shaded region shows the 90% credible interval for the dominant
mode (71% of posterior), reflecting a distinct peak at 35M⊙, and the purple shaded region shows the 90% credible interval for
the subdominant mode (29% of posterior), reflecting a broken power law morphology without a distinct 35M⊙ peak. The black
dashed lines show the 90% credible bounds of the Broken Power Law + 1 Peak model for comparison. The inset figure
shows the joint posterior of the peak mean µ2 and width σ2 for each mode. The vertical grey shaded region indicates the 90%
credible interval of the sum µ2 + σ2, which is consistent between both modes.

Table 12. Comparison of different parametric models for spin magnitudes χi and
tilt angles cos θi.

χi model cos θi model log10 B
Truncated Gaussian ⋆ IID Isotropic + Truncated Gaussian NID 0.0

Constrained Beta IID Isotropic + Aligned Gaussian NID −0.66

Constrained Beta IID Isotropic + Truncated Gaussian NID −0.64

Unconstrained Beta IID Isotropic + Truncated Gaussian NID −0.98

Truncated Gaussian IID Isotropic + Aligned Gaussian NID −0.08

Truncated Gaussian IND Isotropic + Truncated Gaussian NID −1.09

Truncated Gaussian IID Isotropic + Truncated Gaussian NND −0.17

Truncated Gaussian IND Isotropic + Truncated Gaussian NND −0.91

Note—The first row is the Default model for GWTC-4.0 (Gaussian Component
Spins), while the second is the Default that was used for GWTC-3.0 and earlier (Ab-
bott et al. 2019a, 2021a, 2023a; Talbot & Thrane 2017). The third through final
are other models explored. All log Bayes factors (log10 B) are with respect to the
first row.

D.2. Model Comparison Study: Spin Magnitudes and Tilt Angles

We consider two additional spin magnitude models beyond the Gaussian Component Spins model from Sec-

tion 6.3.1: the Constrained Beta and Unconstrained Beta models, both defined by Equation (B29). We also consider
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Figure 17. Distribution of Gaussian Component Spins hyperparameters for the primary BH (blue) and secondary BH (red)
when neither magnitudes nor tilts are assumed identical (last row of Table 12), compared to when they are both assumed
identical (gray, first row of Table 12). The contours of the two dimensional distributions mark the 50th and 90th percentiles.

one additional spin tilt model, the Isotropic + Aligned Gaussian, which fixes µt = 1 in the Gaussian Component

Spins model and served as the Default in GWTC-3.0 (Talbot & Thrane 2017; Abbott et al. 2023a). The first five

rows of Table 12 give the log Bayes factors between these models. Within the Gaussian Component Spins model, we

also test whether the primary and secondary spins are identically and independently distributed (see Appendix B.5.2),

with log Bayes factors given in the bottom three rows of Table 12. The Gaussian Component Spins model with

IID spin magnitudes and NID spin tilts performs the best, and is adopted as the default component spin model in the

main text.

Figure 17 shows posteriors for the magnitude and tilt hyperparameters assuming that χi and cos θi are both identi-

cally distributed (gray) versus both non-identically distributed (blue and red). The primary and secondary spins have

consistent hyperparameter distributions. Assuming identical distribution makes the hyperparameters more-precisely

constrained—yielding tighter 90% bands on the resultant population distributions—but does not affect the overall

shape of the distributions. The only difference of note is that χ2 has less support for a small µχ than χ1, potentially

hinting at more highly spinning secondary BHs on a population level.
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D.3. Dependence of the Effective Spin Distribution on the Likelihood Variance Cut

We next investigate the effect of the likelihood variance threshold (see Appendix A.1) on our strongly modeled

effective spin results. To ensure that posteriors generated using Monte Carlo estimation are trustworthy, i.e., the

likelihood estimate is converged, we enforce that all hyperparameter samples yield a log-likelihood variance σ2
ln L̂ < 1

for all analyses presented in the main text (Talbot & Golomb 2023). In GWTC-3.0, however, a different quantity

was used to assess the Monte Carlo uncertainty: the effective number of independent samples, Neff (Farr 2019). It

was there imposed that Neff be greater than 4Nevents for the sensitivity injections used in Equation (3) and greater

than 10 for every event in the catalog of CBCs. This Neff cut is generally less stringent than the approach taken for

GWTC-4.0. The χp distribution is sensitive to which method is used to cut out samples.

For the most direct comparison to GWTC-3.0, we here use the Gaussian Effective Spins model. Figure 18 shows

the posteriors for the Gaussian Effective Spins parameters where the σ2
ln L̂ (purple) versus Neff (green) cuts are

done on the GWTC-4.0 results. The LVK GWTC-3.0 results (with the Neff cut) are shown in comparison (black).

Figure 19 shows the resultant marginal and joint χeff–χp population distributions. There are three main differences

between the results with the two cuts on GWTC-4.0 data:

1. The σ2
ln L̂ cut yields a µp posterior which is constrained away from zero, while the the Neff cut does not.

2. The Neff cut allows for wider χp distributions (larger σp) than the σ2
ln L̂ cut.

3. Under the Neff cut, χeff and χp are preferentially positively correlated, while under the σ2
ln L̂ cut we remain

agnostic, with preference for small-to-zero correlation.

Thus, the claims that the χp distribution does not peak at zero, and that the data prefer χeff and χp being uncorrelated

at the population level, are not necessarily astrophysical in origin. Rather, they are driven by regions of the parameter-

space that our events and sensitivity injections allow us reliably probe with Monte Carlo likelihood estimators.

The particular sensitivity of the χp distribution to these cuts can be at-least partly attributed to the use of a uniform

and isotropic spin prior in GWTC-4.0 parameter estimation, which induces a χp prior that goes to 0 at χp = 0, 1.

Thus, Equation (2) is prone to yield a small Neff and/or large σ2
ln L̂ when χp is near-minimal or near-maximal. Using

alternative spin priors in parameter estimation could aid in getting more effective samples at small χp, improving

our ability to probe the presence or absence of negligibly precessing BHs at the population level. The Monte Carlo

uncertainty from working with a finite number of samples to estimate the likelihood will only grow more problematic

as the number of observed CBCs increases (Talbot & Golomb 2023); development of mitigation techniques is an area

of active research (e.g., Gerosa et al. 2020; Rinaldi & Del Pozzo 2021; Talbot & Thrane 2022; Callister et al. 2022;

Talbot & Golomb 2023; Leyde et al. 2024; Hussain et al. 2024; Callister et al. 2024; Lorenzo-Medina & Dent 2025;

Mancarella & Gerosa 2025).

D.4. Comparison of Weakly Modeled Approach Results

Mass distributions: We supplement the strongly modeled approach with various weakly modeled approaches. Figure

20 (top panel) shows the inferred primary mass distribution using the B-Spline, AR, Flexible Mixtures, and BGP

models compared to the fiducial Broken Power Law + 2 Peaks model. All models agree within their 90% credible

regions, though the Flexible Mixtures model is the only model that does not exhibit a prominent peak at ∼10M⊙. The
Flexible Mixtures model does not directly infer the primary mass, but instead it models the chirp mass as a Gaussian

mixture model and the mass ratio with a power law. The primary mass distribution shown in Figure 20 is then derived

from these two distributions. The discrepancy between this model and the other weakly modeled approaches could be

due to model misspecification, i.e., assuming the mass ratio distribution follows a power law for all primary masses.

The fact that the discrepancy exists primarily in the ∼10M⊙ region supports the Isolated Peak result in Section

6.2, which suggests the ∼10M⊙ peak disfavors equal mass mergers (i.e., is inconsistent with a power law in mass ratio)

compared to higher mass BBHs. The mass ratio distributions inferred by the B-Spline, AR, and Flexible Mixtures is

shown Figure 20 (bottom panel). The 90% credible regions are consistent between each model. The B-Spline model

infers a peak away from q = 1, which is not present in the AR or Flexible Mixtures results. This may be due to the

B-Spline model’s greater flexibility compared to the AR and Flexible Mixtures models, as it infers all parameters

simultaneously with B-Splines. The AR model assumes an auto-regressive process only in primary mass and mass

ratio, while other parameters are inferred with the fiducial models listed in Table 1. As noted in Appendix C.1, the

figure includes the marginal distributions conditioned on m2 > 3M⊙ from the B-Spline and AR models in addition
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Figure 18. Posterior for the Gaussian Effective Spins model hyperparameters, as defined in Table 9, for GWTC-4.0
under two methods of cutting out samples that may lead to an unconverged likelihood. Posteriors excluding samples with a
substantially large log-likelhood variance (σ2

ln L̂ cut) are shown in purple; those excluding samples with a substantially small
number of effective samples (Neff cut) are in green. In black are the GWTC-3.0 results with the Neff cut for comparison. The
χeff hyperparameters are not affected by the cuts, while the χp and joint-distribution hyperparameters are. The contours of the
two dimensional distributions mark the 50th and 90th percentiles.

to the fully separable components (dashed lines). The two distributions are essentially identical above q ∼ 0.4, below

which the marginal distribution falls off sharply. This implies that the behavior of the strongly modeled approach

below q ∼ 0.4 is primarily due to the prior assumption of a minimum mass cutoff, and not due to information inferred

about the shape of the distribution in that regime.
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Figure 19. Marginal and joint χeff and χp distributions under the Gaussian Effective Spins model using two methods of
cutting out hyperparameter samples that may lead to an unconverged likelihood (see Figure 18). The marginal distributions
show the median (solid line) and 90% credible interval on the probability density for each population distribution (shaded). The
joint distribution is the PPD with contours marking the 50th and 90th quantiles.

Effective spin distributions: In addition to the Skew-normal Effective Spin model and various correlation

models presented for χeff in the main text (Figures 9 and 12), we use the weakly modeled approach for a consistency

check and find the distributions shown in the top panel of Figure 21. We plot the χeff distribution directly inferred with

a binned Gaussian process (BGP; blue) as well as that reconstructed from the spin magnitude and tilt B-Spline model

results (green), and compare them to the Skew-normal Effective Spin (red-orange), Gaussian Effective Spins

(purple), and (q, χeff) Spline (maroon) results from the main text. The two approaches paint the same qualitative

picture: the χeff distribution peaks at small values. However, there is variation between the weakly modeled approach

and strongly modeled approach; the weakly modeled distributions are wider than the strongly modeled distributions.

In Figure 21, we additionally plot posteriors distributions on statistics derived from each χeff distribution (c.f., Table 3),

with results summarized as follows:

• First percentile of the χeff distribution (χeff,1%): The three strongly modeled distributions find consistent first-

percentiles, around ∼ 0.2, while the weakly modeled find that the χeff distribution extends to lower values. In

the case of the BGP, the first-percentile distribution rails against the minimum allowed value of −0.7.

• Fraction of BBHs with negative χeff : All models yield consistent posteriors with one another and find that the

fraction of BBHs with negative χeff is greater than zero and less than ∼ 0.8. The BGP posterior on this fraction

is the widest, and the B-Spline posterior peaks at a higher values than the near-identical strongly modeled

posteriors.
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Figure 20. (Top) Primary mass distributions using the weakly modeled approaches outlined in Appendix C. The Broken
Power Law + 2 Peaks result is shown in black for comparison. All distributions show rates evaluated at z = 0.2, except for
BGP, which shows the rate evaluated on the z = 0.1−0.25 bin. Note that Flexible Mixtures does not infer primary mass directly,
but instead derives it from the chirp mass Gaussian mixture model and the mass ratio as a power law distribution. The lack
of substructure in the Flexible Mixtures mass distribution relative to the other models is likely due to model misspecification
from assuming a power law mass ratio model. (Bottom) Mass ratio distributions using the weakly modeled approaches outlined
in Appendix C. The Broken Power Law + 2 Peaks result is shown in black for comparison. Flexible Mixtures models the
chirp mass as a Gaussian mixture model and the mass ratio as a power law. For the B-Spline and AR models, the separable
distribution p(q) is shown by dashed lines and the conditional marginal distribution p(q|m2 > 3M⊙) =

∫
p(q)p(m1)Θ(m1q −

3)dm1 is shown by the shaded regions, highlighting that the low mass ratio truncation seen in the strongly modeled approach
is largely a prior effect.

• HM fraction: The HM fraction is a heuristic for the upper limit of the fraction of BBHs coming from hierarchical

mergers; it is calculated as 0.16 times the fraction of χeff < −0.3 (Fishbach et al. 2022; Baibhav et al. 2020). We

consistently constrain the HM fraction to be small, with the three parametric models finding it ≲ O(10−1). The

two non-parametric models, on the other hand, find it to be ≳ O(10−2).
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Figure 21. First row: Marginal χeff distributions with BGP (blue) and B-Spline (green) models, as compared to the Skew-
normal Effective Spin (red-orange), Gaussian Effective Spins (purple), and (q, χeff) Spline (maroon) models. The PPD
(average) is shown with a dark line, and the 90% confidence intervals are shaded. Second and third rows: Posteriors on the
first percentile of the χeff distribution (upper left), the fraction of χeff < 0 (upper right), HM fraction (lower left), and the
skew (lower right). See Section 6.3.2 for a discussion of these quantities. Colors correspond to the top panel; purple dashed is
GWTC-3.0 with the Gaussian Effective Spins model for comparison.

• Skew of the χeff distribution about its peak : Each model finds fairly different values of the skew, which is here

defined as the difference between the fraction of χeff > χ0 and χeff < χ0, where χ0 is the value of χeff at which

the distribution peaks (Banagiri et al. 2025, Equation 5). By design, the Gaussian Effective Spins model

will always have a skew of ∼ 0: truncated normal distributions are approximately symmetric about their peak

if the truncation occurs substantially far from the distribution’s bulk, which is here the case. All other models

find a preference for positive skew, meaning that the distribution has more support for χeff above its peak than

below. This is the most pronounced for the Skew-normal Effective Spin, which is entirely inconsistent with

a skew of 0.
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D.5. Merger Rates Including Subthreshold Triggers

Search pipelines compute signal-to-noise ratios (SNRs) of detector data to identify portions of data with above-

threshold SNR, i.e., “triggers”, which may contain GW events (Abac et al. 2025b). Based on pipeline-specific ranking

statistics, triggers are assigned significances quantified by FARs. In the main text, merger rates were calculated

from population analyses that only used triggers surpassing a fixed-significance FAR threshold, which was motivated

to introduce minimal contamination from noise events. By design, the list of triggers included in those analyses is

threshold-dependent. Here, we explore the merger rates by including subthreshold triggers (Farr et al. 2015; Kapadia

et al. 2020), which ensures that the inferred rates are free of biases due to arbitrary significance thresholds and

mitigates loss of information from excluding subthreshold GW candidates. Specifically, we consider the full set of

available triggers from a matched-filtering search, GstLAL (Messick et al. 2017; Sachdev et al. 2019; Hanna et al.

2020; Cannon et al. 2020; Ewing et al. 2024; Tsukada et al. 2023; Sakon et al. 2024; Ray et al. 2023b; Joshi et al.

2025a,b).

The method used by GstLAL to self-consistently classify triggers and compute pastro (Abbott et al. 2019b, 2024,

2023b; Kapadia et al. 2020; Abac et al. 2025b,c; Ray et al. 2023b) values provides the rate densities described here for

BNSs, NSBHs, and BBHs (Abac et al. 2025b; Kapadia et al. 2020). The approach is a simplified version of the methods

described in Appendix C 3 of Abbott et al. (2023a), as well as the discovery of GW200105 and GW200115 (Abbott

et al. 2021c) and GW230529 (Abac et al. 2024). The simplification involves fixing the mass distribution to the Salpeter

model (Salpeter 1955) as opposed to marginalizing over population uncertainties inferred by the above-threshold event

analyses explored in the main text. We do not expect the marginalization over population uncertainties to have a

significant impact on the inferred merger rates, given the uncertainty ranges. When we apply the simpler model to

GWTC-3.0 (Abbott et al. 2023a), the estimated rates are comparable to those derived when marginalizing over the

inferred population. For effective inspiral spins of each trigger, we use a uniform distribution. Consistent with how

searches categorize triggers and compute ⟨V T ⟩ (Abac et al. 2025b), we set the boundary between NSs and BHs to be

3 M⊙. For triggers categorized as BNS or NSBH, we set the bounds of the spins corresponding to a NS to ±0.4. These

bounds are consistent with what the analyses in the main text adopt (see Section 3.2 and Section 5).

Using the fixed population distribution and the Poisson mixture model of Kapadia et al. (2020), we infer the merger

rate densities of the different source categories (BNS, NSBH, and BBH) from the full list of available GstLAL triggers

with FAR < 1 hour−1. This is done while self-consistently accounting for the possibility that some of these triggers are

likely noise artifacts. We construct the posterior of astrophysical counts of BNS, NSBH, and BBH events by utilizing

mass-based binning template weights (Ray et al. 2023b). We estimate the time–volume sensitivity (Tiwari 2018; Abac

et al. 2025b) ⟨V T ⟩ for each event category α (α = BNS, NSBH, BBH), using injections (Essick et al. 2025), and their

contributions to the counts posterior (Kapadia et al. 2020). Finally, we compute the rates posterior from marginalized

counts posterior and the estimated ⟨V T ⟩ (Abbott et al. 2019b, 2021a, 2023a; Abac et al. 2025c):

p (Rα) = p (Λ1α|x) ⟨V T ⟩O1-O4a,α. (D46)

Here, p (Λ1α|x) is the marginalized counts posterior where Λ1α is the astrophysical count for event category α and

Λ1α = Rα⟨V T ⟩O1-O4a,α. Here, O1-O4a indicates that data from O1 throughout O4a are used. The vector x represents

the set of triggers using in this analysis, where each xi consists of the ranking statistics information, SNR, and an

identifier for the template associated with the trigger.

A Jeffreys prior, ∝ N−1/2, is imposed on the astrophysical counts for BBHs to construct their posterior from

the mixed Poisson likelihood and compute the merger rate. The merger rate of BBHs is computed to be 13.1–17.3

Gpc−3 yr−1. This is consistent with the BBH merger rate provided in the analyses presented in the main text, and

the rate has been further narrowed compared to the results of Abbott et al. (2023a) while still being consistent within

uncertainties. A uniform prior is used for NSBHs and BNSs, as the number of detected events containing a NS is

small. We compute the NSBH merger rates to be 22.2–143 Gpc−3 yr−1, which is consistent with the NSBH merger

rate presented in main text. Similarly to the rate for BBHs, the rate of NSBHs is consistent with the rate obtained

from the analyses of GWTC-3.0 but has been further narrowed. The BNS merger rate is calculated to be 30.9–361

Gpc−3 yr−1, which is consistent with the BNS merger rate presented in the main text and has been narrowed down

compared to the rate obtained from the analyses of GWTC-3.0.
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D.6. Supplementary Results: BBH Correlations

Here, we supplement the correlated BBH population results presented in Section 6.5 with additional results and

figures. In the top panel of Figure 22, we plot the posterior distribution for the level of correlation κχeff ,z inferred

in the Copula model for (z, χeff). Note the peak at positive values, and long tail into negative values. The middle

panels show the inferred mass distributions, using a mass-redshift correlated BGP analysis, binned by redshift. We

see that both the primary and secondary mass distribution appear to be broadly consistent across redshifts up to

z = 1. Finally, we investigate mass and spin correlations with the data-driven FM analyses. In the bottom panels of

Figure 22, we plot the inferred distribution of orbital aligned spin χz as a function of both chirp mass and mass ratio,

obtained with the FM analysis. We see that the results have a large degree of uncertainty, and are broadly consistent

with findings explored here and in Section 6.5.
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Figure 22. Top: Posterior distributions for the level of correlation between redshift and effective inspiral spin κχeff ,z inferred
using the Copula model. The vertical black dashed line in each plot indicates a value of κχeff ,z, at which no correlation is
implied. Middle: Inferred distributions of primary mass (left), and secondary mass (right) in the redshift and spin correlated
BGP analysis. The solid lines bound the 90% credible intervals for each redshift bin. We can see that all redshift bins from
z = 0.01 to z = 1 are consistent within 90% credibility. Bottom: Correlated mass and spin PPDs from the FM model. Solid lines
give the medians, while the shaded regions encompass 90% of the PPD volume. The left panel gives the inferred distribution
of aligned spin χz given mass ratio. We do not see any evidence for or against a correlation. The right panel gives the inferred
distribution of the aligned spin magnitude |χz| as a function of chirp mass. We see that the uncertainty is very large, with a
notable drop in the ∼20−30M⊙ region. For reference, this region very roughly corresponds to the 30M⊙ peak observed in the
component mass distributions (a 30M⊙+30M⊙ BBH has a chirp mass of M ≈ 26M⊙). Following the mass- and spin-correlated
BGP results then, it is unsurprising that the FM results prefer a local minimum in aligned spin magnitude in this region.
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Astron. Astrophys., 688, A148,

doi: 10.1051/0004-6361/202449272

Toubiana, A., Katz, M. L., & Gair, J. R. 2023, Mon. Not.

Roy. Astron. Soc., 524, 5844,

doi: 10.1093/mnras/stad2215

Tout, C. A., & Pringle, J. E. 1992, MNRAS, 256, 269,

doi: 10.1093/mnras/256.2.269

Trani, A. A., Tanikawa, A., Fujii, M. S., Leigh, N. W. C., &

Kumamoto, J. 2021, Mon. Not. Roy. Astron. Soc., 504,

910, doi: 10.1093/mnras/stab967

Tsukada, L., et al. 2023, Phys. Rev. D, 108, 043004,

doi: 10.1103/PhysRevD.108.043004

Turbang, K., Lalleman, M., Callister, T. A., & van

Remortel, N. 2024, Astrophys. J., 967, 142,

doi: 10.3847/1538-4357/ad3d5c

Usman, S. A., et al. 2016, Class. Quant. Grav., 33, 215004,

doi: 10.1088/0264-9381/33/21/215004

van den Heuvel, E. P. J., Portegies Zwart, S. F., &

de Mink, S. E. 2017, Mon. Not. Roy. Astron. Soc., 471,

4256, doi: 10.1093/mnras/stx1430

van Son, L. A. C., de Mink, S. E., Chruslinska, M., et al.

2022a, doi: 10.3847/1538-4357/acbf51

van Son, L. A. C., de Mink, S. E., Broekgaarden, F. S.,

et al. 2020, Astrophys. J., 897, 100,

doi: 10.3847/1538-4357/ab9809

van Son, L. A. C., de Mink, S. E., Callister, T., et al. 2022b,

Astrophys. J., 931, 17, doi: 10.3847/1538-4357/ac64a3

van Son, L. A. C., de Mink, S. E., Renzo, M., et al. 2022c,

Astrophys. J., 940, 184, doi: 10.3847/1538-4357/ac9b0a

Varma, V., Field, S. E., Scheel, M. A., et al. 2019, Phys.

Rev. Research., 1, 033015,

doi: 10.1103/PhysRevResearch.1.033015

Venumadhav, T., Zackay, B., Roulet, J., Dai, L., &

Zaldarriaga, M. 2019, Phys. Rev. D, 100, 023011,

doi: 10.1103/PhysRevD.100.023011

—. 2020, Phys. Rev. D, 101, 083030,

doi: 10.1103/PhysRevD.101.083030

Vijaykumar, A., Fishbach, M., Adhikari, S., & Holz, D. E.

2024, Astrophys. J., 972, 157,

doi: 10.3847/1538-4357/ad6140

Vitale, S., Biscoveanu, S., & Talbot, C. 2022, Astron.

Astrophys., 668, L2, doi: 10.1051/0004-6361/202245084

Vitale, S., Farr, W. M., Ng, K., & Rodriguez, C. L. 2019,

Astrophys. J. Lett., 886, L1,

doi: 10.3847/2041-8213/ab50c0

Vitale, S., Gerosa, D., Farr, W. M., & Taylor, S. R. 2020,

doi: 10.1007/978-981-15-4702-7 45-1

Vitale, S., Lynch, R., Sturani, R., & Graff, P. 2017, Class.

Quant. Grav., 34, 03LT01,

doi: 10.1088/1361-6382/aa552e

Vitale, S., & Mould, M. 2025.

https://arxiv.org/abs/2505.14875

Wadekar, D., Roulet, J., Venumadhav, T., et al. 2023.

https://arxiv.org/abs/2312.06631

Wang, Y.-H., McKernan, B., Ford, S., et al. 2021,

Astrophys. J. Lett., 923, L23,

doi: 10.3847/2041-8213/ac400a

Wang, Y.-Z., Li, Y.-J., Vink, J. S., et al. 2022, Astrophys.

J. Lett., 941, L39, doi: 10.3847/2041-8213/aca89f

Wiktorowicz, G., Wyrzykowski,  L., Chruslinska, M., et al.

2019, doi: 10.3847/1538-4357/ab45e6

Winch, E. R. J., Vink, J. S., Higgins, E. R., & Sabhahitf,

G. N. 2024, Mon. Not. Roy. Astron. Soc., 529, 2980,

doi: 10.1093/mnras/stae393

Woosley, S. E. 2017, Astrophys. J., 836, 244,

doi: 10.3847/1538-4357/836/2/244

Woosley, S. E., & Heger, A. 2021, Astrophys. J. Lett., 912,

L31, doi: 10.3847/2041-8213/abf2c4

Wysocki, D., Gerosa, D., O’Shaughnessy, R., et al. 2018,

Phys. Rev. D, 97, 043014,

doi: 10.1103/PhysRevD.97.043014

http://doi.org/10.3847/1538-4357/ac4bc0
https://arxiv.org/abs/2508.11091
http://doi.org/10.3847/1538-4357/ac86c8
http://doi.org/10.1103/PhysRevD.103.083022
http://doi.org/10.1126/science.aau4005
http://doi.org/10.1017/pasa.2019.2
http://doi.org/10.1088/1361-6382/aac89d
http://doi.org/10.1088/1361-6382/ac0b54
http://doi.org/10.3847/1538-4357/ac589a
http://doi.org/10.1093/mnras/stad3155
http://doi.org/10.3847/2041-8213/abfbe7
http://doi.org/10.1088/0264-9381/33/1/01LT01
http://doi.org/10.1103/PhysRevD.106.103019
http://doi.org/10.1051/0004-6361/202449272
http://doi.org/10.1093/mnras/stad2215
http://doi.org/10.1093/mnras/256.2.269
http://doi.org/10.1093/mnras/stab967
http://doi.org/10.1103/PhysRevD.108.043004
http://doi.org/10.3847/1538-4357/ad3d5c
http://doi.org/10.1088/0264-9381/33/21/215004
http://doi.org/10.1093/mnras/stx1430
http://doi.org/10.3847/1538-4357/acbf51
http://doi.org/10.3847/1538-4357/ab9809
http://doi.org/10.3847/1538-4357/ac64a3
http://doi.org/10.3847/1538-4357/ac9b0a
http://doi.org/10.1103/PhysRevResearch.1.033015
http://doi.org/10.1103/PhysRevD.100.023011
http://doi.org/10.1103/PhysRevD.101.083030
http://doi.org/10.3847/1538-4357/ad6140
http://doi.org/10.1051/0004-6361/202245084
http://doi.org/10.3847/2041-8213/ab50c0
http://doi.org/10.1007/978-981-15-4702-7_45-1
http://doi.org/10.1088/1361-6382/aa552e
https://arxiv.org/abs/2505.14875
https://arxiv.org/abs/2312.06631
http://doi.org/10.3847/2041-8213/ac400a
http://doi.org/10.3847/2041-8213/aca89f
http://doi.org/10.3847/1538-4357/ab45e6
http://doi.org/10.1093/mnras/stae393
http://doi.org/10.3847/1538-4357/836/2/244
http://doi.org/10.3847/2041-8213/abf2c4
http://doi.org/10.1103/PhysRevD.97.043014


61

Wysocki, D., Lange, J., & O’Shaughnessy, R. 2019, Phys.

Rev. D, 100, 043012, doi: 10.1103/PhysRevD.100.043012

Yang, Y., Bartos, I., Haiman, Z., et al. 2019, Astrophys. J.,

876, 122, doi: 10.3847/1538-4357/ab16e3

Ye, C. S., & Fishbach, M. 2024, Astrophys. J., 967, 62,

doi: 10.3847/1538-4357/ad3ba8

Ye, C. S., Fong, W.-f., Kremer, K., et al. 2020, Astrophys.

J. Lett., 888, L10, doi: 10.3847/2041-8213/ab5dc5

Ye, C. S., Kremer, K., Ransom, S. M., & Rasio, F. A. 2024,

Astrophys. J., 975, 77, doi: 10.3847/1538-4357/ad76a0

Zackay, B., Venumadhav, T., Dai, L., Roulet, J., &

Zaldarriaga, M. 2019, Phys. Rev. D, 100, 023007,

doi: 10.1103/PhysRevD.100.023007

Zaldarriaga, M., Kushnir, D., & Kollmeier, J. A. 2018,

Mon. Not. Roy. Astron. Soc., 473, 4174,

doi: 10.1093/mnras/stx2577

Zevin, M., & Bavera, S. S. 2022, Astrophys. J., 933, 86,

doi: 10.3847/1538-4357/ac6f5d

Zevin, M., Bavera, S. S., Berry, C. P. L., et al. 2021,

Astrophys. J., 910, 152, doi: 10.3847/1538-4357/abe40e

Zhang, R. C., Fragione, G., Kimball, C., & Kalogera, V.

2023, Astrophys. J., 954, 23,

doi: 10.3847/1538-4357/ace4c1

Ziosi, B. M., Mapelli, M., Branchesi, M., & Tormen, G.

2014, Mon. Not. Roy. Astron. Soc., 441, 3703,

doi: 10.1093/mnras/stu824

http://doi.org/10.1103/PhysRevD.100.043012
http://doi.org/10.3847/1538-4357/ab16e3
http://doi.org/10.3847/1538-4357/ad3ba8
http://doi.org/10.3847/2041-8213/ab5dc5
http://doi.org/10.3847/1538-4357/ad76a0
http://doi.org/10.1103/PhysRevD.100.023007
http://doi.org/10.1093/mnras/stx2577
http://doi.org/10.3847/1538-4357/ac6f5d
http://doi.org/10.3847/1538-4357/abe40e
http://doi.org/10.3847/1538-4357/ace4c1
http://doi.org/10.1093/mnras/stu824

	Introduction
	Methods
	Strongly Modeled Approach
	Weakly Modeled Approach

	Dataset
	Data Collection Duration
	Event Selection Criteria
	Significance Thresholds
	Mass and Significance Thresholds for Events with NS
	Exclusion of Non-LVK Catalog Events

	Sensitivity of GW Searches
	Source Properties

	Binary merger population across all masses
	The Mass Spectrum of Compact Binaries
	Merger Rates
	The Neutron Star–Black Hole Transition

	Population Properties of Mergers Containing Neutron Stars
	Binary Black Hole Population
	Primary Mass
	Mass-Ratio
	Spin
	Spin Magnitudes and Tilts
	Effective Spins

	Merger Rate and Redshift Evolution
	Population-level Correlations between Parameters
	Mass Ratio and Spin Correlations
	Mass and Spin Correlations
	Redshift and Spin Correlations
	Redshift and Mass Correlations


	Conclusion
	Hierarchical Inference Details
	Likelihood Estimation
	Sampling Techniques

	Summary of models used in the strongly modeled approach
	Mass Model for the Full CBC Population
	Neutron Star Mass Models
	Binary Black Hole Mass Models
	Power Law Redshift Model
	Spin Models
	Component Spin Models
	Identical versus Non-identically Distributed Spin Magnitudes and Tilts
	Effective Spin Models

	Copula Correlation Models
	Linear Correlation Models
	Spline Correlation Models

	Summary of models used in the weakly modeled approach
	B-Spline models
	Binned Gaussian Process (BGP) Model
	Autoregressive Process (AR) Model
	Flexible Mixtures (FM) Model

	Result Validation Studies
	Model Comparison Study: Mass
	Model Comparison Study: Spin Magnitudes and Tilt Angles
	Dependence of the Effective Spin Distribution on the Likelihood Variance Cut
	Comparison of Weakly Modeled Approach Results
	Merger Rates Including Subthreshold Triggers
	Supplementary Results: BBH Correlations


