August 24th, 2023

Quality Testing Optically Contacted Bonds for LIGO Voyager

DCC: T2300276

Sophia Adams Prof. Rana Adhikari Collaborators: Ian MacMillan, Aaron Markowitz

Motivation

LIGO's test masses are currently made of many fused silica parts

Image of one of LIGO's test masses from Caltech/MIT/LIGO Lab

Image of LIGO Hanford from Caltech/MIT/LIGO Lab

The test masses are suspended by ribbons and made out of several smaller pieces which contributes to suspension thermal noise

Image of a LIGO quad from IGR, University of Glasgow

Image of Advanced LIGO principal noise sources as a function of frequency from optica-opn.org

Thermal noise limits the sensitivity of the detector as described by the fluctuation dissipation theorem

Heat dissipation through the interfaces of the mirror parts is a source of fluctuation which causes the mirrors to vibrate

Optically contacted silicon is thought to have low thermal noise but has yet to be tested

Image of optically contacted glass from solarisoptics.eu

Testing

A high quality factor corresponds to low thermal noise

How to find the quality factor of a bond...

Maximizing the **Energy of the Bond:** A Geometry **Optimization Problem**

Estimation to Gain an Intuition

Three different cantilever geometries were analyzed in order to find a suitable energy ratio between the bond and the rest of the silicon wafer. The ratio between shear and bending energy was estimated for the geometries shown in figure 1 using the following equations where M is the moment, I is the moment of inertia, l is the length, E is young's modulus, K is a constant that depends on the geometry (1.11 for circular and 0.5 for rectangular sections), V is the traverse shear force, G is the modulus of rigidity, and A is the cross sectional area.

Finite Element Analysis in COMSOL: Pizza Cantilever

 Table 1: Pizza Cantilever Energies.

Eigenfrequency (Hz)	Bulk (N*m)	Shear (N*m)	Total (J)	Shear/Bulk
34557	6.0-13	2.5E-12	1.5E-12	4.2
51994	1.4E-12	5.8E-12	3.6E-12	4.3
$1.0385 \mathrm{E5}$	2.8E-12	1.2E-11	7.4E-12	4.3
$1.5129 \mathrm{E5}$	5.8E-12	2.8E-11	1.7E-11	4.8
$2.1981\mathrm{E5}$	1.0E-11	4.7 E- 11	2.8E-11	4.6
* 2.7240 E5	2.1E-12	5.6E-10	2.8E-10	270

* is excluded because its shear strain dominates on the edges. We want to maximize the strain at the bond.

Finite Element Analysis in COMSOL: Rectangular Cantilever

 Table 2: Rectangular Cantilever Energies.

Eigenfrequency (Hz)	Bulk (N*m)	Shear (N*m)	Total (J)	Shear/Bulk
20385	2.2E-12	8.6E-12	5.4E-12	3.9
30507	4.8E-12	2.0E-11	1.2E-11	4.2
$1.1796\mathrm{E5}$	7.3E-11	3.3E-10	2.0E-10	4.5
*1.2326E5	1.4E-12	3.6E-10	1.8E-10	260
1.6250 E5	1.3E-10	7.3E-10	4.3E-10	5.4
$2.2601\mathrm{E5}$	$5.1 \text{E}{-}10$	2.1E-9	1.3E-9	4.1

* is excluded because its shear strain dominates on the edges. We want to maximize the strain at the bond.

Finite Element Analysis in COMSOL: Lab Dimensions

Table 3: Rectangular Cantilever With Lab Dimensions Energies.				
Eigenfrequency (Hz)	Bulk (N*m)	Shear (N*m)	Total (J)	Shear/Bulk
1266.0	5.3E-16	1.9E-15	1.2E-15	3.6
7927.1	2.0E-14	7.6E-14	4.8E-14	3.7
* 12012	2.3E-15	1.4E-13	6.9E-14	58
22212	1.6E-13	5.8E-13	3.7E-13	3.6
30433	2.7E-13	1.2E-12	7.4E-13	4.5
36767	3.6E-14	1.2E-12	6.0-13	3.3

Table 4: Pizza Cantilever With Lab Dimensions Energies.

Eigenfrequency (Hz)	Bulk (N*m)	Shear (N*m)	Total (J)	Shear/Bulk
2085.9	1.5E-16	5.9E-16	3.7E-16	4.0
6624.0	8.0E-16	3.2E-15	2.0E-15	4.0
14820	3.4E-15	1.3E-14	8.2E-15	3.9
*25628	2.6E-15	1.9E-13	9.9E-14	75
26899	1.1E-14	4.0E-14	2.5E-14	3.8
42943	2.6E-14	9.8E-14	6.2E-14	3.7

* is excluded because its shear strain dominates on the edges. We want to maximize the strain at the bond.

Selecting the Geometry: Results

- The pizza cantilever had a higher shear/bulk ratio than the rectangular cantilever at the frequency I estimated
- The rectangular cantilever had the highest shear/bulk ratio overall
- The ratio was highest when the thickness of the cantilever was minimized

Optimizing the Dimensions

Added a boundary load and ran a stationary study to find the von Mises stress Plotted the shear/bulk ratio and energy per length of the inner surface divided by total energy for different widths/heights/lengths and eigenfrequencies Simultaneous parameter estimation with fminsearch

Optimizing the Dimensions: Results

- The stress in the bond was highest when the load was applied normal to the end surface of the cantilever. This was confirmed by an analysis of the eigenfrequencies
- The height of the cantilever should be made as small as possible (in the .1 mm range)
- The width and length should also be minimized but do not have as much of an affect
- The width affected the ratio more and should be 0.5033 mm
- The length should be 1.0313 cm

1. Educated Guess

Frequency

Rate of Decay

2. Bayesian Monte Carlo Method

3. Calculate Q

$$w_1 = -\frac{\omega}{2Q}$$
 $w_2 = \omega \sqrt{1 - \frac{1}{4Q^2}}$

Future Work

References

- Douglas, R., Aspects of hydroxide catalysis bonding of sapphire and silicon for use in future gravitational wave detectors. (2017).
- Mitrofanov, V. (2016). LP Grishchuk memorial conference. In *LIGO Voyager Project of Future Gravitational Wave Detector*. Moscow. Retrieved from

https://dcc.ligo.org/LIGO-G1602258/public.

- R X Adhikari et al 2020 Class. Quantum Grav. 37 165003
- R Nawrodt et al 2008 J. Phys.: Conf. Ser. 122 012008
- Wright, J. J. & Zissa, D. E. OPTICAL CONTACTING FOR GRAVITY PROBE STAR TRACKER. 14 (1984).

Thanks!

- Alan Weinstein
- Rana Adhikari
- Ian MacMillan
- Aaron Markowitz
- LIGO peers

