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Abstract

Gravitational waves observed by LIGO allow us to test general relativity in the strong-field regime
with populations of binary merger events. Observations thus far are consistent with general relativity at
both the individual and population level. Current tests of general relativity utilize a single deviation param-
eter rather than generic deviation parameters, which makes it difficult to map this information to specific
theories and robustly test them over ensembles of events. We apply Bayesian inference to the inspiral phase
of gravitational-wave signals in binary black hole merger events, to obtain posterior distributions for the
15 source parameters and 10 post-Newtonian deviation parameters. This parameter estimation involves the
hybrid sampling method which uses nested sampling to seed parallel-tempered Markov Chain Monte Carlo
(MCMC) ensembles and allows us to explore degenerate parameter spaces. We apply a Principal Compo-
nent Analysis (PCA) to reduce the dimensionality of the parameter space, to understand the underlying
correlations between the deviation parameters. Hierarchical inference could then be applied to ensembles
of events to test specific theories beyond general relativity, such as the dynamical Chern Simons (dCS)
and Einstein-dilaton Gauss-Bonnet (EdGB) theories. This would result in constraining the bounds on the
coupling coefficients that characterize these specific theories.

I. Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) has opened up a new era of physics
with its first observation of a binary black hole merger [1]. Approximately 90 compact binary merger events
have been observed thus far with the latest gravitational-wave transient catalog (GWTC-3) [2]. LIGO utilizes
dual recycled, Fabry-Pérot-Michelson interferometers to measure gravitational-wave emissions from distant
astrophysical sources [3]. Binary black hole mergers are characterized by two orbiting black holes that
undergo distinct phases: an inspiral, merger, and ringdown phase that results in the formation of a single
massive black hole [4]. Once the black holes form a binary system, through the emission of gravitational
waves, the binary black holes lose orbital angular momentum and eccentricity which leads the black holes
to inspiral in a quasi-circular orbit. As the orbiting black holes approach the merger, numerical relativity
methods characterize this stage because the post-Newtonian expansion that describes the inspiral loses
accuracy [5]. At the start of the merger, there is a plunge where the black hole horizons merge as their
orbits become unstable. The resulting remnant black hole becomes stable in the ringdown stage and its
gravitational-wave radiation is characterized by quasi-normal modes [6]. The gravitational-wave radiation
provides the opportunity to test fundamental physics in the strong-field, highly dynamical regime of gravity
which has been previously inaccessible in experimental tests of general relativity (GR) ([7].

LIGO’s current population of binary merger events has been consistent with predictions of GR in the
strong-field regime [8–10]. We can place constraints on alternative theories by inferring that GR is consistent
with observations [11]. Einstein’s theory of relativity has been tested extensively in the weak-field regime,
yet theoretical expectations suggest that at high energies GR may break down [12]. This motivates testing
theories around compact sources such as binary black hole mergers which involve stronger curvatures and
shorter dynamical time scales [3, 12].

During the inspiral phase, gravitational-wave signals transition from the weak field to moderately strong
field, and spacetime is violently curved when binaries merge [13]. The inspiral phase can be accurately

1



modeled with a post-Newtonian formalism [5]. The post-Newtonian formalism is a method for solving
Einstein’s field equations in the weak-field regime and it has been proven to be effective in describing
energetic systems [14]. This method perturbatively expands the binary’s evolution in powers of orbital
frequency. Post-Newtonian phasing coefficients describe the physical effects in the relativistic dynamics of
binaries, such as spin-spin interactions [15]. By focusing on the inspiral phase, we aim to look for deviations
from GR by inferring the fractional deviations from the post-Newtonian phasing coefficients.

As LIGO becomes more sensitive, the number of binary mergers will grow which will allow for de-
viations to be more accurately constrained. By analyzing inspiral phase post-Newtonian coefficients for
many gravitational-wave events, we are able to understand alternate theories whose coefficients vary in their
post-Newtonian expression. The consistency of these coefficients with predictions of GR serve as a precise,
independent test of the theory [10, 15].

Multi-parameter tests of GR consist of simultaneously inferring multiple post-Newtonian deviation pa-
rameters to search for deviations from GR. This general approach to jointly infer all parameters allows for us
to constrain theories beyond GR, which can encompass deviations in more than one post-Newtonian phasing
coefficient. To speed up this computationally intensive process, we apply a parameter estimation method,
hybrid sampling, to jointly infer source and post-Newtonian deviation parameters. Hybrid sampling allows
us to better understand the degeneracies in this high-dimensional parameter space. We apply a PCA which
can be used to mitigate these degeneracies by transforming the deviation parameters into more informative
parameters. However, these transformed parameters will not be used to constrain beyond GR theories in a
hierarchical model due to individual gravitational-wave events needing a principal component basis across
all observations.

In Section II, we describe applying the hybrid sampling method to astrophysical and deviation parameters
in order to learn more about their correlations. After this, in Section III we explain our multi-parameter test
including how injections were generated and a PCA application that allows us to learn more about where
information is being carried in the parameter space. In Section IV, we apply hybrid sampling and a PCA
to simulated gravitational-wave signals and demonstrate the presence of correlations between the deviation
parameters. In Section V, the work completed over the summer is summarized and future directions are
described.

II. Bayesian Inference

The objective in applying parameter estimation is to constrain the astrophysical parameters and the
deviations from predictions of GR parameters in gravitational-wave sources. Bayesian inference allows us to
recover the posterior probability distributions for the 15 parameters describing binary black hole mergers and
the 10 deviation parameters describing their departure from GR. The posterior distributions of the source
and deviation parameters are constructed using Bayes’ theorem,

p(θ|d,M) =
L(d|θ,M)π(θ|M)

Z(d|M)
, (1)

where the 25 parameters θ are constrained given the observed strain data d and a model M [16]. The
likelihood function, L(d|θ,M), denotes the likelihood of observing the data given the parameter values and
model. The prior distribution, π(θ|M), includes our assumptions about the parameters and is chosen to
be uniform. The evidence, Z(d|M), is known as a normalization factor which entails the probability of
observing the data given the model.

The likelihood describes the observations in different parameters, showing how well the model fits the
data. It includes a noise model where the noise is assumed to be approximated by stationary Gaussian
noise from LIGO’s detectors [16]. The model M relates to a phenomenological model describing binary
black hole merger waveforms that reflect our assumptions about the Universe, particularly about waveforms
predicted by general relativity. Eq. 1 reflects the posterior distribution for the entire set of parameters. In
obtaining the distribution on individual parameters, they must be marginalized over the other parameters.
The resulting posterior distribution is high-dimensional and computationally expensive, therefore hybrid
sampling is applied.
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A. Hybrid Sampling

The first objective involves applying hybrid sampling via Bilby to jointly infer the 15 GR parameters
of the binary black hole merger events in GWTC-3 and 10 post-Newtonian deviation parameters [17]. This
method treats GR as the initial prediction in order to initialize the deviation parameter estimation. For
each gravitational-wave signal, the data is sampled first using nested sampling via dynesty [18]. These
nested samples initialize the walkers of a parallel-tempered Markov Chain Monte Carlo (MCMC) with the
implementation of the package ptemcee in order to obtain generic, multi-dimensional samples [19, 20]. The
hybrid sampling method is computationally efficient and has been empirically demonstrated to accurately
recover posterior distributions [10]. By using nested sampling with only source parameters to seed a parallel-
tempered ensemble MCMC with posterior estimates, hybrid sampling is able to efficiently explore the higher
dimensional parameter space of an extended model that includes deviation parameters. This process is
outlined in Fig. 1 below.

Figure 1: Schematic representation showing the steps involved in hybrid sampling to obtain posterior dis-
tributions. Nested sampling breaks the posterior into nested slices, samples from each slice, and recombines
the samples to construct the original distribution with weights. Parallel-tempered MCMC directly samples
from these nested samples and uses an ensemble of walkers, in parallel, to explore the posteriors at different
temperatures.

1. Nested Sampling

The first step of hybrid sampling involves applying nested sampling to only the astrophysical param-
eters. Nested sampling approximates both the evidence and posterior distribution. Rather than directly
sampling the posterior, nested sampling iteratively breaks up an unknown posterior into nested slices and
samples from each slice. These samples are recombined to construct the original distribution with weights,
resulting in combined weighted samples [18]. These samples from nested sampling are then used to seed the
parallel-tempered MCMC.

More specifically, nested sampling takes random new points from the prior distribution. At each point,
the lowest likelihood value is replaced from the set of random points with new samples drawn from the prior
[16, 21]. This procedure continues until there is a random point that has a higher likelihood than the point
that was replaced. For each removed point in a prior volume, the sum of likelihood with prior volume for
each sample is calculated to estimate the evidence. Nested sampling is terminated when the replaced points
at each iteration result in an integral encompassing the majority of the posterior [18].
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2. Parallel-Tempered Monte Carlo Markov Chain

When incorporating a parallel-tempered MCMC, both the astrophysical and deviation parameters are
being sampled. Several parallel Markov chains directly sample from the resulting combined nested samples
described in Sec. II A 1. These walkers, in parallel, explore the posteriors at different temperatures, denoted
by βT = 1

T . The posterior distributions at various temperatures from this ensemble MCMC method is

pβT
(θ|d) = LβT (d|θ)π(θ)

ZβT (d)
, (2)

where LβT is the tempered likelihood surface [10]. When the temperature approaches infinity, the tempered
posterior reaches the prior. Higher temperatures result in the posterior distribution being easier to sample
with MCMC, due to the peaks in the likelihood distribution becoming broader [20]. The ensemble of walkers
can easily explore the prior volume and convergence time is reduced by allowing walkers to jump between
different temperatures [10]. This method efficiently allows for the ensemble of walkers to accurately estimate
the posterior distribution in less iterations and at any step, the ensemble is representative of the posterior
[10]. By applying hybrid sampling, degenerate parameter spaces can be explored.

B. Hierarchical Inference

After generating posterior distributions for all the astrophysical and deviation parameters, we plan on
applying a hierarchical approach to test specific theories using all the possible deviations from GR for each
gravitational-wave event. This hierarchical procedure involves combining multiple gravitational wave events
and marginalizing over individual event parameters [9]. In combining events hierarchically and sampling the
hyperposterior, we are able to learn more about the underlying population parameters. These population
parameters can describe the coupling coefficients of specific theories beyond GR. The hierarchical inference
method further entails using a Gaussian Mixture Model (GMM), which is a computationally inexpensive
density estimation procedure [22]. The GMM estimates the posterior probability densities of each individual
event. This allows for the likelihood functions for each event to be efficiently evaluated [9].

III. Modeling Tests of GR Deviations

Parameterized tests of GR involve searching for deviations in the post-Newtonian phasing coefficients
in the phase evolution of signals. The deviations from GR are modeled by

φi → φGR
i (1 + δφi), (3)

where φGR
i = {φ−2, φ0, φ1, φ2, φ3, φ4, φ5L, φ6, φ6L, φ7} and δφi denotes the dimensionless fractional devia-

tion parameters [15]. When δφi are zero, it corresponds to there being no deviation from GR.
For our source model, the post-Newtonian parameterization of the phase evolution during the inspiral

phase of the general relativistic waveform in the frequency domain is

Φ(f) = 2πftc − ϕc −
π

4
+

3

128
×

7∑
k=0

1

ηk/5

(
φk + φk,l ln f̃

)
f̃ (k−5)/3 , (4)

where tc is the time and ϕc is the phase when the binary black holes coalesce, η = m1m2/M
2 is the symmetric

mass ratio of the system, f is the frequency, and f̃ is the frequency scaled by πGM(1 + z)f/c3[23].
Previous analyses have modified a single deviation parameter at a time which has proven to be effective

in finding deviations that involve multiple phasing coefficients, however the effectiveness of multi-parameter
tests can be improved [10, 11]. A multi-parameter test of GR is conducted to obtain generic deviation
parameters in order to map them to specific theories and constrain their coupling coefficients.
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A. Injection Generation

Waveforms were generated using a phenomenological waveform model, IMRPhenomPv2, to conduct
the parameter estimation mentioned in Sec. II. The priors for the deviation parameters are shown in Table
1. For this analysis, we vary δφ2 as a test when injecting beyond GR signals into simulated noise from
LIGO’s Hanford detector.

Parameter Prior
δφ0 U(-2, 2)
δφ1 U(-4, 4)

δφ2, δφ3, δφ4, δφ5L U(-8, 8)
δφ6 U(-10, 10)

δφ6L, δφ7 U(-40, 40)

Table 1: Prior distributions for the deviation parameters which are uniform distributions U(x, y), where x
is the lower limit and y is the upper limit of the distribution.

Signal-to-noise ratio (SNR) and overlap cuts were applied to produce 10 injection parameters that more
closely align with real gravitational wave signals and do not significantly deviate from GR. The SNR cut
involved using the optimal SNR from the Hanford interferometer at a sampling frequency of 1024 Hz,
reference frequency set to 20 Hz, and for a duration of 8 seconds. Injections were randomly sampled until
the optimal SNR > 20, to ensure the gravitational wave signals were not buried by the detector’s noise.
The cut was made on the inspiral SNR, computed from a frequency range of 20 Hz to the frequency of the
innermost stable circular orbit,

fISCO =
c3

6
√
6G(m1 +m2)

(5)

where m1 and m2 are the component masses. In this context, the innermost stable circular orbit is right
before the binary black holes plunge and this cut allows us to capture the inspiral phase.

We apply an overlap cut between beyond GR signals and their associated GR signal to constrain the
signals to be similar. The overlap O > 0.9,

O =
∣∣∣ ⟨h̃GR, h̃BGR⟩√

⟨h̃GR, h̃GR⟩⟨h̃BGR, h̃BGR⟩

∣∣∣ (6)

was derived where h̃GR is the +-polarization of the GR waveform in the frequency domain and h̃BGR is the
+-polarization of the beyond GR waveform [10]. The inner products between the waveforms are weighted
with the power spectral density from the Hanford detector. The same source parameters were used in h̃GR

and h̃BGR. As seen in Fig. 2, the waveforms in the time domain with these cuts appear to resemble real
gravitational wave signals. In this example, the beyond GR waveform had a deviation in δφ2.

B. Principal Component Analysis

To further understand the underlying correlations between the deviation parameters, a Principal Com-
ponent Analysis (PCA) decomposition is applied to create new deviation parameters. The resulting posterior
distributions from jointly inferring all the deviation parameters, is used to compute a covariance matrix con-
sisting of the covariance between pairs of deviation parameters [15]. A linear transformation is applied to
create the PCA parameters,

δφ
(i)
PCA =

∑
k

αikδφk, (7)

which results in linear combinations of the original deviation parameters with the components of the transfor-
mation matrix. The coefficients αik are the eigenvectors of the transformation matrix where i is the number
corresponding to the PCA parameters. The coefficients and deviation parameters are summed over k, the
number of deviation parameters. The leading PCA parameters are expected to carry the most information.
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Figure 2: Beyond GR strain in the time domain for an injection that includes the SNR and overlap cuts and
its associated GR waveform. There is a deviation in δφ2 for the beyond GR waveform.

In addition, the PCA parameters are not used for hierarchical applications because a common eigenbasis is
needed for all events, resulting in difficulty mapping to specific theories beyond GR.

IV. Results

A. Parameter Estimation

A parameter estimation run was made with the SNR and overlap cuts, as described in Sec. III A, and
adjusted parallel-tempered MCMC parameters. The number of steps used by ptemcee increased to 200 and
the unburnt chains were stored in the result. Figure 3 shows the improved marginal and joint distributions
for an arbitrary example of injection parameters. The expected correlation between M and q is seen. The
marginal distributions for each of the displayed parameters have converged towards their true parameters.
A roughly positive correlation is also seen between δφ2 and δφ3, which describe the early inspiral regime.

Normalized likelihoods were evaluated to try to understand the posterior distribution of δφ4. These
likelihood values were calculated given the source parameters that correspond to a particular likelihood
value, such as the maximum likelihood value, along the δφ4 prior range. In Fig. 4 the parameters from the
maximum, minimum, and two randomly sampled likelihood values were calculated to illustrate the likelihood
surface. The likelihood value is plotted on the y-axis and a range of δφ4 values, spanning the prior range,
is on the x-axis. The dotted black line indicates the true value of δφ4. The curves show the maximum,
minimum, and two random likelihoods with their proportional likelihood distribution. There is a cut off at
the prior bounds for δφ4. The resulting likelihood distributions appear Gaussian which indicates that there
are potentially underlying correlations in the marginal posterior distributions that are not being seen in our
corner plot.

B. PCA Decomposition

By applying a PCA decomposition to the 10 deviation parameters from the hybrid sampling run
described in the previous Sec. IVA, we learned where most of the information in our posteriors is coming
from. As expected, the first two parameters δφ0

PCA and δφ1
PCA are the most informative. As seen in Fig. 5,
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Figure 3: Marginal and joint posterior distributions of the M, q, and deviation parameters resulting from
the SNR and overlap cuts as well as improved ptemcee parameters. The contours denote the 1, 2, and 3σ
confidence intervals. The orange line indicates the true value for each parameter.

the marginal distributions are wider the farther in the corner plot that they are from the two leading PCA
parameters because these leading parameters already contain the most of the information. The marginal
distributions of each PCA parameter consistently converge at zero, except δφ0

PCA because δφ2 is dominating
the eigenspace. The correlations are generally removed, as expected, in order to understand more about
where the information is being carried in the parameter space.

V. Conclusions

In working towards constraining specific theories beyond GR, we applied hybrid sampling to the devi-
ation parameters associated with the inspiral of binary black hole mergers at the same time. This resulted
in obtaining posterior distributions for the 25 parameters describing the source and deviations, and allowed
us to learn more about the correlations amongst the source and deviation parameters. To better understand
these correlations and create a more effective multi-parameter test, we then applied PCA to the marginal
posterior distributions of the deviation parameters which recast these correlations. This showed that most
of the information from the data is coming from the two leading PCA parameters.

This result motivates our next step to apply both hybrid sampling and a PCA to real gravitational-
wave signals. Then, the hybrid sampling results from individual events and a hierarchical model consisting
of theories of gravity can be applied. In the future, this will allow us to try to constrain the bounds on
coupling coefficients characterizing these beyond GR theories which are mapped out via a parameterized
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Figure 4: Normalized likelihoods of δφ4 over the prior range. The normalized likelihood is plotted on the
y-axis and a range of δφ4 values, spanning the prior range, is on the x-axis. The dotted black line indicates
the true value of 0. The curves show the maximum, minimum, and two random likelihood values with their
proportional likelihood distribution.

post-Einsteinian framework [24].
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