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1 Introduction

Gravitational waves are distortions in spacetime produced by accelerating masses. Their
existence was predicted over 100 years ago with the development of general relativity and the
first experimental observation was made on September 14, 2015 by the Laser Interferometer
Gravitational Wave Observatory (LIGO) and Virgo collaborations of gravitational waves
produced by a merger of 2 black holes.[1].

The Advanced LIGO detector is a pair of Michelson interferometers in Washington State
and Louisiana with 4km arms [4]. The detector design includes several optical cavities to
increase sensitivity. These include Faby-Perot cavities in each arm, a power recycling cavity,
and a signal recycling cavity. A diagram is shown on the left of figure 1.

Figure 1: On the left, a diagram of one of the Advanced LIGO detectors [2]. On the right,
the sensitivity curve of Advanced LIGO [3]. Each line shows the amplitude spectral density
of a noise source. The total combination, in black, produces the predicted noise floor for
advanced LIGO.

Gravitational waves cause the arms of the interferometer to lengthen and contract relative
to each other as the wave propagates through the detector. This changes the path length
for light traveling in each arm, producing a relative phase difference detectable through
interference. The fractional change in the length of the arms of the detector is known as
strain and is proportional to the amplitude of the gravitational wave signal. Advanced
LIGO’s strain sensitivity curve is shown on the right of figure 1. The black curve, which is a
combination of the individual noise sources shown in other colors, represents the minimum
amplitude gravitational wave signal detectable in each frequency band.

There are many length degrees of freedom (DoF) that must be controlled for the detector
to operate. Figure 2 shows these degrees of freedoms and the sensors used to generate error
signals. The most important of these is DARM, defined below.

L− =
Lx − Ly

2
(1)
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Figure 2: A diagram of one of the Advanced LIGO detectors [5]. REFL, POP, and AS
denote collections of photodiodes measuring at DC and radio frequencies (RFPDS).

For the detector to operate, these length DoFs need to be controlled. This is achieved by
deriving error signals from sensors around the detector. These error signals drive feedback
loops that keep the detector at its operating point. A block diagram of a simplified control
loop for DARM is shown in figure 3. The plant of the control system is the suspension of the
mirrors. These are disturbed by the gravitational wave signal and noise causing additional
displacement to the mirrors. The sensors converts this to an error signal for DARM and
the control block uses the error signal to drive actuators that apply force to the mirrors to
return them to the set point. The DARM error signal can be calculated from the open loop
transfer functions.

DARM =
S

1− SPC
(n+ gw) (2)

This length control system is needed to stabilize the detector against displacement noise to
maintain a linear response to fluctuations in its DoF. However, by controlling mirror motion
against displacements, the mirror motion due to gravitational wave signals is also suppressed.
The gravitational wave signal is attained by applying the inverse of the closed loop transfer
function from the error signal to DARM.

gw =
1− ŜP̂ Ĉ

Ŝ
DARM (3)

The hats on the inverse transfer functions indicate that they are models that must be mea-
sured for accurate readout of the signal.
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Figure 3: The control loop for DARM shown with the injection of displacement noise and
gravitational wave signal [6].

The control system is a key part of the detectors function. Currently, there are more sensors
with some coupling to the length DoFs than there are length DoFs. A linear system that uses
the outputs of all of these sensors would be overdetermined. The current control techniques
only employ a subset of the sensors to generate a determined system: equal numbers of
DoFs and sensors. This project will explore the potential benefits to the sensitivity of the
detector from designing an overdetermined control system that can take advantage of noise
correlations between the sensors to reduce the susceptibility of the control system to various
noise inputs.

2 PRMI Configuration

We consider the simplified detector configuration of a Michelson interferometer with a power
recycling cavity(PRMI). This is a simplification of the Advanced LIGO detector configuration
since there are no Fabry-Perot cavities in the detector arms and no signal recycling mirror
after the anti-symmetric port of the beam splitter to form a signal recycling cavity. There
are two important length DoFs in this configuration, MICH and PRCL, defined in equations
4 and 5 respectively based on length definitions in figure 2. MICH is the difference in the
arm lengths and PRCL is the length of the power recycling cavity.

l− =
lx − ly

2
(4)

lp = l′p +
lx + ly

2
(5)

The 40m LIGO prototype at the California Institute of Technology is a 1:100 scale version
of the Advanced LIGO detectors. This instrument is used for research and development
of technologies for future gravitational wave detectors. This project will study the PRMI
configuration of the 40m prototype.
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3 40m LIGO prototype PRMI Length Control System

Figure 4: The block diagram for the control loop for MICH and PRCL in the PRMI config-
uration is shown.

A block diagram representing the relevant structure of the control system for MICH and
PRCL is shown in figure 4. PC is the transfer function containing the control filters and the
mechanical plant. Y measures the fluctuations in MICH and PRCL from their set point. In
symbols, we can take the differential of both sides of equations 4 and 5 to get equations 6.

Y =

[
δl−
δlp

]
=

[
δlx−δly

2

δl′p +
δlx+δly

2

]
(6)

S is the Nx2 sensing matrix that maps MICH and PRCL states to the values measured by the
N different sensors which are stored in X. M is the 2xN sensor fusion matrix which linearly
combines the N sensors into 2 fused sensors, Z. Displacement noise, nd, causes fluctuations
in MICH and PRCL that need to be suppressed by controls. Sensing noise, ns, represents
all other noises that enter the loop due to the sensing and control process. This includes
laser noise, ADC noise, photodiode dark noise, and other sources which can be correlated or
uncorrelated between the detectors. The feedback system causes ns to propagate to Y and
become additional noise on MICH and PRCL. This is why care must be taken to generate
the error signals for control. The current design of M selects one sensor for each DoF to
generate an error signal and discards the rest of the sensors. Currently, PRCL is sensed
with a REFL photodiode demodulated at 11MHz and MICH is sensed by an AS photodiode
demodulated at 55 MHz.
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Table 1: A subset of the RFPDs used for the initial study of the PRMI LSC system are
tabulated

Type Demod frequency (MHz) Demod phase (degrees)
AS 55 in-phase
AS 55 quadrature

REFL 55 in-phase
REFL 55 quadrature
REFL 11 in-phase
REFL 11 quadrature
REFL 165 in-phase
REFL 165 quadrature

4 PRMI LSC measurements

The 40m LIGO prototype was locked in the PRMI configuration by several of the LIGO
lab staff. This allowed for open loop transfer functions for the MICH and PRCL control
loops to be measured. These are shown in figure 5. 80 seconds of data was taken from 8 RF
photodiodes, listed in table 1.

Figure 5: The measured open loop transfer functions for MICH and PRCL during the PRMI
lock are shown. The coherence of the measured PRCL OLTF was poor below 60 Hz so the
gain and phase were extrapolated from higher frequencies for use in calculations.

The amplitude spectral densities(ASD) of the sensor signals are shown in 6. These signals
will be calibrated into meters for multiple choices of M in later plots.
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Table 2: The response of each detector to MICH and PRCL are shown. These elements form
the sensing matrix.

Sensors MICH (counts/meter) PRCL (counts/meter)
AS55-I (+4.44± 2.93)e+ 08 (+1.69± 0.37)e+ 10
AS55-Q (+9.89± 1.00)e+ 09 (−3.77± 0.50)e+ 09
REFL11-I (−1.43± 0.53)e+ 10 (+9.13± 0.86)e+ 11
REFL11-Q (−7.73± 3.71)e+ 08 (+5.13± 0.50)e+ 10
REFL55-I (−6.12± 2.24)e+ 11 (+3.70± 0.37)e+ 13
REFL55-Q (+1.46± 0.53)e+ 11 (−8.89± 0.86)e+ 12
REFL165-I (−3.73± 0.49)e+ 09 (+6.20± 0.60)e+ 10
REFL165-Q (−1.38± 0.10)e+ 09 (−2.24± 0.17)e+ 10

Figure 6: The amplitude spectral density of the uncalibrated sensors signals during the
PRMI lock are shown.

The sensing matrix was measured by driving MICH and PRCL with sinusoids at 211.1 Hz
and 313.31 Hz respectively. The results are shown in table 2.
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5 Data Analysis

In this section, I’ll develop the mathematical framework needed to simulate the performance
of the PRMI control loop with an arbitrary choice of sensor fusion.

5.1 Relevant Transfer Functions

The block diagram in figure 4 tells us how the various signals can be related mathematically.
The sensor signals,X, can be calculated in terms of the injected noises.

X = (I+ SPCM0)
−1 (Snd + ns) (7)

M0 =

[
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

]
(8)

M0 is the fusion matrix used during the PRMI lock that selects the AS55 quadrature-phase
sensor for MICH and the REFL11 in-phase sensor for PRCL. The unsuppressed noises can be
calculated from the sensor signals by transforming with (I+ SPCM0.). The unsuppressed
noise can be defined as follows.

X̃ = (I+ SPCM0)X (9)

Then, the closed loop suppression of the feedback system with an alternative M can be
calculated by mapping with (I+ SPCM.)−1. The simulated sensor signals, Xsim, are defined
as follows.

Xsim = (I+ SPCM)−1 X̃ = (I+ SPCM)−1 (I+ SPCM0)X (10)

The signal in the fused sensors can be calculated by mapping Xsim by M.

Zsim = MXsim = M (I+ SPCM)−1 (I+ SPCM0)X (11)

Finally, the simulated noises that would be measured on MICH and PRCL given M can be
calculated from transforming Zsim by (MS)−1.

Ysim = (MS)−1Zsim = (MS)−1M (I+ SPCM)−1 (I+ SPCM0)X (12)

M and S are rectangular matrices so they do not have unique inverses, but their product,
MS, is a 2x2 matrix with a unique inverse that determines how the fused sensors relate
to MICH and PRCL . An important consequence of this is that the (MS)−1M factor in
equation 12 does not simplify to cancel M. We’ll denote the complete transfer function from
X to Ysim as GX,Ysim

.
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5.2 Power Spectral Densities of Frequency Domain Transformed Signals

The power spectral densities of the new signals derived from frequency domain transforma-
tion of the measured signals, X, are important for understanding performance of the sensor
fusion matrices.

Suppose we have two frequency domain signal vectors V (ω) and W (ω) related by a transfer
function A, with elements a(ω)ij. The ith signal in V is the following.

vi(ω) = ΣN
j a(ω)ijw(ω)j (13)

The cross spectral density between v(ω)k and v(ω)l can be calculated as follows.

CSD(vk, vl) = lim
T→∞

1

T
v∗kvl = lim

T→∞

1

T
ΣN

i Σ
N
j (a(ω)kiw(ω)i)

∗a(ω)ljw(ω)j (14)

T is the time over which the signal is observed. We can move the sum and the factors
a(ω)∗kia(ω)lj outside the limit since they have no dependence on T and we can assume that
CSD(xi, xj) is well defined for all i, j.

CSD(vk, vl) = ΣN
i Σ

N
j a(ω)

∗
kia(ω)lj lim

T→∞

1

T
w(ω)∗iw(ω)j = ΣN

i Σ
N
j a(ω)

∗
kia(ω)ljCSD(wi, wj)

(15)

We can rewrite this last expression in a more concise form.

CSD(vk, vl) = AkCSD(W )AH
l (16)

CSD(W ) refers to a matrix where the i, j element is CSD(wi, wj) and Ai is column i of the
transfer function matrix A and superscript H denotes hermitian conjugate. It follows that
CSD(V ) permits a simple expression in terms of CSD(W ).

CSD(V ) = ACSD(W )AH (17)

Therefore we can use the transfer functions calculated in the last section to transform
CSD(X), the matrix of cross spectral densities of the sensors measured in the PRMI lock, to
calculate the cross spectral density of the signals in the simulated control system. The main
use of this is to calculate the simulated amplitude spectral densities of MICH and PRCL with
sensor fusion. This is done in equation 18 that uses the GX,Ysim

transfer function calculated
in the previous section. The MICH and PRCL ASDs are the square root of the diagonal
terms of CSD(Ysim).

CSD(Ysim) = GX,Ysim
CSD(X)GH

X,Ysim
(18)

6 Proposed Sensor Fusion Matrices and Simulated Re-

sults

In this section, I will describe the methods for sensor fusion that I investigated and use the
calculations above to simulate their performance for the PRMI control loop.
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6.1 Diagonalization of MS

The product matrix MS maps from the MICH and PRCL signals to the virtual sensors.
Therefore, it is natural to consider choices of M that diagonalize MS. The current choice
of sensor fusion matrix does not diagonalize MS.

M0S =

[
9.89e+ 09 −3.77e+ 09
−1.43e+ 10 9.13e+ 11

]
(19)

The large off diagonal components result in cross coupling between MICH and PRCL. There-
fore a simple potential improvement will be to choose the new sensor fusion matrix to diag-
onalize MS and maintain the same on diagonal components.

MS =

[
9.89e+ 09 0

0 9.13e+ 11

]
(20)

One choice forM that satisfies this condition uses the Moore-Penrose inverse of S, S+, shown
in equation 21. This sensor fusion matrix will be referred to as the Moore-Penrose or MP
matrix.

M =

[
9.89e+ 09 0

0 9.13e+ 11

]
S+ (21)

Since there are more sensors than DoFs, this condition does not uniquely specify M. A fur-
ther improvement may be attained by specifying a cost function to optimize. This approach
was taken to reduce the sensing noise entering the system at high frequencies.

6.2 High Frequency Sensing Noise Optimization

Above a kilohertz, the amplitude spectral densities of the sensor signals are white, reflecting
that the signal composition is essentially only sensing noise, as shown by figure 7.

103 2× 103 3× 103 4× 103 6× 103

f(Hz)

10−3

10−2

10−1

co
u

n
ts

/H
z

ASD of Sensors ≥ f = 1000Hz

AS55 I

AS55 Q

REFL55 I

REFL55 Q

REFL11 I

REFL11 Q

REFL165 I

REFL165 Q

Figure 7: The ASD of the sensor data above 1KHz.
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Therefore, CSD(X̃) is a good approximation of the sensing noise injected into the system
at high frequencies. This sensing noise enters the fused sensors, and the rest of the system,
through M. Thus the cost function was derived from mapping CSD(X̃) with M. and
then integrating over frequencies (1,6)KHz. The upper bound was chosen to avoid the high
frequency cutoff where the ASD in each sensor vanishes.

COST =

∫ 6KHz

1KHz

CSD(Zns) =

∫ 6KHz

1KHz

MCSD(X̃)MT (22)

Each row of M defines the sensor fusion for one of the virtual sensors and so they can be
optimized independently in this case. Thus the cost functions used to optimize the first row
and second rows of M are the COST1,1 and COST2,2. These optimizations were done with
respect to the constraint that M diagonalize MS as described. This constraint maintains
the amplitude of the signal in each fused sensor. Thus, minimized these cost functions
maximizes the high frequency SNR of the fused sensors. The optimization was implemented
with scipy.optimize.minimze().

6.3 Sensor Fusion Results

The simulated amplitude spectral densities of MICH and PRCL are shown in figure 8.

Figure 8: The ASD of the simulated noises on MICH and PRCL for several choices of M.

The open loop noises on MICH and PRCL were calculated by mapping CSD(X̃) by S+, the
Moore-Penrose inverse of the sensing matrix. The data for the current sensor fusion matrix

page 11



LIGO-T22xxxxx–

is shown in orange, the M calculated with the rescaled Moore-Penrose inverse of the sensing
matrix is presented in orange, and the results of the high frequency SNR optimized sensor
fusion matrix is is shown in red.

At low frequencies the all sensors perform similarly since the MICH and PRCL motion
dominates over other noise sources and all the sensors were designed to have the same gain
to these signals. This is enforced by the on-diagonal components of the diagonal condition
for MS. At high frequencies the SNR optimized sensors result in about half the noise in
our sensing of MICH and PRCL. For MICH, the SNR optimized sensor has significantly
worse performance around 30Hz. This is likely due to noise from PRCL that has coupled
into the MICH sensor. The imperfect knowledge of the sensing matrix makes it impossible
to eliminate all cross couplings between the two DoFs and the PRCL signal is dominant in
all the sensors except AS55_Q. Thus, it is particularly challenging to design a MICH sensor
with multiple sensors that stays orthogonal to PRCL.

7 Studying Noise Correlations in Calibrated Data

In addition to explicit design of virtual sensors, techniques to learn about noise sources in
the data from their frequency dependent correlations between the sensors was studied in
this project. With uncalibrated sensor data the relative magnitudes of the sensor signals
are undefined. Therefore, the sensors were calibrated to PRCL by rescaling each sensor’s
signal by the sensing matrix element mapping to that sensor from PRCL. The result is
that noise correlations were studied in the context of designing a PRCL virtual sensor. A
similar analysis could be done with a MICH calibration but PRCL was chosen since it is
the dominant signal at low frequencies in most of the sensors. This calibration was applied
directly to CSD(X̃) to calculate the unsuppressed cross spectral density matrix calibrated
to PRCL with equation 23.

CSD(ỸPRCL)i,j =
CSD(X̃)i,j
Si,2Sj,2

(23)

A tool for analysis of calibrated data was the band-limited covariance matrix. For N sensors,
this is an NxN matrix that quantifies the magnitude of the correlated fluctuations between
all possible sensor pairs within a specific frequency range. This was employed since many
of the noise sources in the sensors, including the displacement noise that we want to sense,
are expected to be frequency dependent. The band limited covariance matrix was defined
such that integration over the entire frequency range, (0,∞), would yield the traditional
covariance matrix, defined in equation 24 for ergodic zero mean variables.

[Rxx]i,j = E{xixj} = lim
T→∞

∫ T

0

xi(t)xj(t)df (24)

T is the time over which the variables are measured. The connection to cross spectral
densities becomes clear by considering the power spectral density of xi + xj. By Parseval’s
Theorem we know that the integral of the power spectral density over all frequencies is equal
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to the variance.

E{(xi + xj)
2} = lim

T→∞

∫ ∞

0

PSD(xi + xj)df (25)

We can expand both sides to see the connections between the cross terms. The left hand
side can be rewritten in equation 26 using linearity of expectation values.

E{(xi + xj)
2} = E{x2

i }+ E{x2
j}+ 2E{xixj} (26)

The right hand side can be rewritten using cross spectral densities.∫ ∞

0

PSD(xi + xj)df =

∫ ∞

0

(PSD(xi) + PSD(xj) + CSD(xi, xi) + CSD(xj, xi)) df (27)

With application of Parseval’s Theorem again, we can state the equality of the cross terms.

E{xixj} = lim
T→∞

1

2

∫ ∞

0

(CSD(xi, xj) + CSD(xj, xi)) df (28)

Therefore the equation 29 was used to defined the band-limited covariance matrix for the
frequency range (f1, f2).

Rf1,f2
ỹy =

∫ f2

f1

1

2

(
CSD(ỸPRCL) + CSD(ỸPRCL)

T
)
df (29)

Specifically, this is the band-limited covariance of the unsuppressed and PRCL calibrated
sensors signals.

7.1 Principal Component Analysis for Noise Peaks

The amplitude spectral density of the calibrated sensor data contains many features that
dominate over a particular frequency range. For each of these features, we can model them
as an individual noise source, n, which is coupled into the sensors through an Nx1 matrix
Sn. This analysis will consider a principal component analysis within the frequency band
(f1, f2) where a noise peak is dominant.

Within (f1, f2), this cross spectral density of CSD(X̃) is dominated by n.

CSD(X̃) ≈ SnPSD(n)Sn
T (30)

After calibration to PRCL this becomes equation 31.

CSD(ỸPRCL)i,j ≈
(Sn)i
Si,2

PSD(n)
(Sn)j
Sj,2

= SPRCL
n PSD(n)(SPRCL

n )T (31)

I have defined SPRLC
n to be the to be the PRCL calibrated Sn matrix. Since CSD(ỸPRCL)

is symmetric and Sn is assumed to be frequency independent, the band-limited covariance
matrix over this frequency range will be well approximated by the equation 32.

Rf1,f2
ỹy = SPRCL

n

∫ f2

f1

PSD(n)df(SPRCL
n )T = SPRCL

n σ2
n(S

PRCL
n )T = σ2

nS
PRCL
n (SPRCL

n )T (32)
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The last step in equation 32 uses the fact that σ2
n is a scalar since we are assuming only

one noise source is relevant in this frequency range. Thus, the order of the terms can be
rearranged so that the band-limited covariance matrix becomes the outer product of SPRCL

n

scaled by the noise power, σ2
n, within the frequency range. A singular value decomposition

of SPRCL
n yields equation 33.

SPRCL
n = UΣVT = ±UΣ (33)

The first form of the SVD in equation 33 uses the traditional notation where U is a NxN
unitary matrix, Σ is a Nx1 rectangular diagonal matrix, and VT is a 1x1 unitary matrix.
This is simplified into the last equality in equation 33 since VT will be ±1. The band-limited
covariance can be rewritten in diagonalized form in equation 34

Rf1,f2
ỹy = UΣσ2

nΣ
TUT (34)

The result is that we expect the first principal component of a PCA over this frequency
range will be proportional to SPRCL

n . The other N-1 principal components will form an
orthonormal basis of the subspace perpendicular to SPRCL

n . Even though the principal com-
ponents are normalized to 1, they do not remain calibrated to PRCL. This can be achieved
by renormalizing them by the sum of their components.

In conclusion, a band-limited PCA may provide information on how dominant noise sources
are coupling into the sensors.

7.2 Principal Component Analysis of simulated noise spike

This technique was first evaluated by injecting an artificial noise signal into CSD(ỸPRCL).
This was done by choosing an Sn and defining the injected noise cross spectral density
matrix, CSD(Ỹn), to have the form of equation 35.

CSD(Ỹn) = A exp(f − f0)
2SnSn

T (35)

The peak frequency, f0, was chosen at 1KHz where the ASD of each sensor is flat and the
band-limited PCA was done in the frequency range (950,1050)Hz. This choice of frequency
range has the effect of considering a 100Hz bandwidth injected noise source. The width of
the gaussian in equation 35 is much narrower than 100Hz, but, as described in equation 32,
it is only the integral of the gaussian over the (950,1050)Hz range that affects the PCA.
Therefore it is convenient to choose a 1Hz width gaussian and adjust the amplitude, A, to
control the total noise power, σ2

n. The amplitude, A, was defined relative to the true noise
in the sensors in this frequency region. Without injected noise, a band-limited PCA was
done to calculate the eigenvalue of the first principal component, λ1. This represents the
dominant variance before the noise is injected. Then, CSD(Ỹn) was used alone to calculate
a covariance matrix and perform a PCA only considering the injected noises. The eigenvalue
of the first principal component (the rest are zero), λn, is a simple function of A. Thus A

was varied to consider values of
λn

λ1

from 10−3 to 103. At logarithmically spaced steps in this

interval of injected variances, 100 random choices for Sn, pulled from a uniform distribution
of normalized vectors, were considered. For each one, a band-limited PCA was done with
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the noise injected into the real sensor data. If the injected noise is sufficiently dominant over
the other noise sources, then the PCA will produce U1 = ±Sn. To quantify the extent to
which this is true, the angle between U1 and Sn was calculated. Deviation angles over 90

degrees were mapped back to [0, 90] by θ → 180− θ. For each value of
λn

λ1

, the results were

averaged over 100 random Sn and the standard deviations of these distributions were taken
as error bars. The results are shown in figure 9.

Figure 9: The deviation angles of U1 from Sn are calculated for 100 trials of random Sn’s

at values of
λn

λ1

ranging from 10−3 to 103.

Unsurprisingly, when the injected noise source is smaller or comparable to the dominant noise
in the data, PCA does a poor job of extracting Sn from the data. When the injectected

variance is larger,
λn

λ1

> 1, the deviation angle decreases approximately ∝
(
λn

λ1

)−1

signifying

the improvement in the performance of the PCA. The results imply that a noise source with
a variance 10x greater than other noises within a frequency range can yield band-limited
PCA results with accuracy on the order of single degrees.

7.3 PCA of real noise spikes

This analysis technique was done on a ∼ 180 Hz feature in the PRCL calibrated dated. The
PRCL calibrated sensor ASDs over the whole frequency range and zoomed in around the
feature are shown in figure 10
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Figure 10: The ASD of the sensor data calibrated to PRCL and, in the lower figure, zoomed
in around a ∼ 180 Hz feature.

The ASDs of the sensor linear combinations corresponding to the principal components, after
the described renormalization, are displayed in figure 11. The result is largely consistent
with expectations. The band-limited covariance matrix was calculated for the frequency
range (175,185)Hz where the ASD of all the sensors contain this dominant feature. After
transforming to the PCA basis, the first principal component presents the ASD with the
largest noise spike about∼ 100 times larger than the others. The second principal component
also present a peak. The next several principal components don’t present the peak feature,
but at the expense of a larger ASD at other frequencies. The last two principal components
show suppressed peaks at 180 Hz with the last one presenting ∼ 10 better SNR at 180Hz
than any of the sensors.
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Figure 11: The ASD of the linear combinations, corresponding to the principal components,
of sensor data calibrated to PRCL. The lower figure is zoomed in around a ∼ 180 Hz feature
and plots the sensor data in blue and the principal component linear combinations in dashed
red lines. One of the dashed red lines still presents the noise spike while the rest show a
suppressed or no spike at all.

8 Summary and Next Steps

Methods have been developed to use measurements of the PRMI length sensing and control
system to simulate the performance of the system with a new sensor fusion matrix M imple-
mented. Two techniques for calculating M have been suggested and they are both predicted
to reduce the amplitude spectral density of noise on both MICH and PRCL over a range of
frequencies. These techniques should be evaluated on the 40m LIGO prototype by imple-
menting the new sensor fusion techniques during a PRMI lock and measuring the resulting
noise ASDs. In addition, new cost functions can be explored to optimize the M over different
frequency ranges and with more sophisticated techniques to estimate the sensing noise.

In addition, the usefulness of principal components analysis to understand narrow frequency
features in the sensors noise spectrum has been explored. The results suggest that band-
limited PCA can extract information about the noise vector, Sn through which single domi-
nant noise sources enter the space of sensor signals. Future work can explore the applications
of this technique to the design of virtual sensors with improved SNR in narrow frequency
regions or with frequency dependent sensor fusion to optimize SNR in several frequency
ranges.
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