Frequency Stabilization of 2 Micron Lasers Using Optical Delay Self-Heterodyne Interferometry Stella Kraus, Hannah Rose Mentors: Aidan Brooks, Rana Adhikari Caltech

IGO

Motivation

- Current LIGO:
 - 1064 nm
 - Fused Silica Test Masses
- Silicon:
 - Cryogenic Compatible
 - Less Mechanical Loss / Thermal Noise
 - Opaque at 1064 nm

Adhikari et. al

Image credit: LIGO Caltech

New Wavelength

- Low Si Absorption at 1400 2100 nm
- Current Laser Options:
 - 1550 nm
 - 1800 2100 nm
- Absorption Considerations:
 - Si has less absorption at longer wavelengths

LIGO Voyager

- Potential Post-O5 upgrade:

- Cryogenic Silicon Test Masses

- 2050 nm Wavelength

- Requires Stable 2050 nm Source

4

Laser Frequency Noise

- Measure via Phase Noise:

$$2\pi f(t) = \omega(t) = \frac{d}{dt}\phi(t)$$
$$E(t) = Ae^{i(\omega_0 t + \phi_n(t))}$$

- Phase Forms a Random Walk
- Within Interferometer

$$\phi_n(t) = 2\pi f_n(t)\Delta t$$

Measure Phase Error via Mach - Zehnder (MZ) Interferometer

Correct for Error via Feed Forward

Measure Corrected Signal via Second MZ interferometer

Measuring Noise

122

9-11

11

See 1

Mach-Zehnder Interferometer

- Interferometer Arms Differ in Time Delay by au

Fiber Stretcher Interferometer

Image credit: Wagner, et. al

10

Locking the Loop

Т

Calibrating Noise

- Sweep through fringes with

fiber stretcher to correlate

input voltage out of PD with

radian change $\frac{radians}{volt}$

- Radian change and

frequency drift related by

$$f(t) = V_{out}(t) \frac{radians}{volt} \frac{1}{2\pi\tau}$$

Calibrating the Photodiode (PD)

- Correspond PD Voltage to Laser Power
- Low Frequencies:

1/f Intensity Noise Dominates

- High Frequencies:

Shot Noise Dominates

- Variations in Electron Flow
- ASD of Shot Noise in amps/rtHz Given by $\,\delta n_{shot} = \sqrt{2q} |ar{I}$

Noise Sources

- Moku Input Noise floor
- Shot noise
- Photodiode Dark Noise
- Relative Intensity Noise
- Frequency Noise
- Piezo Controller Noise
- Moku Output Noise

Image credit: Photonics Media

Image credit: Thorlabs

Image credit: <u>Thorlabs</u>

LIGO Noise Budget

Theoretical Noise Budget

Realistic Noise Budget

Moku Input Noise Floor

Noise Budget Before Whitening

Noise Budget After Whitening

Performing the Feedforward

Locking Both Interferometers

Demonstration of Noise Reduction

Conclusions

Successes:

- Two Interferometers
- Analysis of Noise in Measurement
- Demonstration of Noise Reduction

Future Work:

- Continue Modeling System
 - Analytic Ideal Cancellation
- Extend Cancellation Range
- Match Electrical & Optical Delay

Acknowledgements

Aidan Brooks, Rana Adhikari

LIGO, Caltech

National Science Foundation

Caltech Class of '52 Named SURF

Caltech SFP Office

All the LIGO SURF students!

Extra Slides

Shot Noise

- Noise due to the fact that
 photocurrent is a discrete
 flow of electrons
- There are variations in electron flow, as governed by Poisson statistics

Shot Noise 1.6×10^{-7} (V/rtHz) 1.5×10^{-7} ASD 1.4 × 10⁻⁷ 1.3×10^{-7} Noise 1.2×10^{-7} -requency 1.1×10^{-7} 10^{-7} 100 10¹ 10² 10^{3} 10^{4} 10^{5} Frequency (Hz)

- ASD of shot noise in amps/rtHz given by $\,\delta n_{shot} = \sqrt{2q}|ar{I}|$
 - q : charge of electron
 - $|\bar{I}|$: absolute value of average current

10⁶

Relative Intensity Noise

- Fluctuations in intensity of laser output
- Measured without interferometer
- Convert input wattage of measured signal into DC output voltage, divide spectrum by this DC value

Photodiode Noise

- "Dark noise" from applying
 DC bias to diode
- Present whether laser is on or off
- Can't just measure signal out of PD since it is below ADC noise floor
- Measured with signal amplified, then undid the amplification in our analysis

Frequency Noise

- Measured spectrum while laser was locked

Loop-Locking Noise

- There is noise associated with outputting a signal on the Moku and from using a piezo controller to amplify our signal
- Measured piezo controller output spectrum with a DC voltage input
- Set Moku to output a sine wave with a small amplitude and measured spectrum of the output

Low-pass Filter

- Suppress noise
 from fiber stretcher
 controls at high
 - frequencies
- Use capacitance of fiber stretcher as our capacitor

