

Evaluating Environmental Noise at LIGO

Adrian Helmling-Cornell GW Astronomy NW June 28, 2023

Environmental Noise

- Spacetime is stiff
 - GW amplitudes are small
- LIGO requires extreme precision
 - Extreme sensitivity to environment

Aerial view of LIGO Hanford beset by environmental noise sources. Credit MIT/Caltech/LIGO LAB, J. Kissel.

LIGO's PEM Sensors

- Observe the environment around each LIGO detector with a network of physical environment monitoring (PEM) sensors
 - Magnetometers
 - Seismometers
 - Radio antennas
 - Cosmic ray detectors
 - More...

Cartoon depicting PEM sensor types and locations at LIGO Hanford. From pem.ligo.org.

Demystifying Mystery Noise

- Identify new sources of noise that we're sensitive to
- Recommend commissioning improvements

4 Hz harmonic response of GW channel (above) to EX big shaker sweeps (accelerometer witness below) in O3 (left) and ER15 (right). From alog 69758 (Schofield *et al.*).

PEM Coupling Functions

- Quantify expected environmental noise in the GW data using coupling functions
- Prior to each observing run, excite the PEM sensors with injections and measure any resulting differential arm length (DARM) recorded by LIGO

5

PEM Coupling Functions

- Use composite injection data to estimate the differential arm length measured due to environmental noise per sensor count
 - Repeat for each PEM sensor at each frequency
- End result: dictionary to convert environmental effects to noise in GW strain measurement

- For each GW candidate, determine whether environmental noise contaminates the GW signal
 - Do not expect environmental noise to *cause* a detection
- Noise contamination may impact parameter estimation, sky localization
 - Some noise/glitch subtraction tools developed for LIGO data analysis
- Goal: for each GW candidate, rapidly and automatically recommend whether and where noise mitigation is needed
 - Prior to O4, this was done by hand
 - Infeasible for number of expected O4 events

- Solution: pemcheck
- For each GW candidate:
 - Extract signal time and frequency information
 - Compute spectrograms of GW and PEM sensor data during the event
 - Project PEM data into DARM
 - For each pixel in the GW data spectrogram, compute the probability that the data in that pixel is due to projected PEM noise
 - Discard tiles that do not intersect proposed GW
 - Return the probability of environmental noise contamination as a function of time and frequency for each channel

Top: constant-Q transform of GW data from GW200112_155838. Bottom: probability of noise contaminating data witnessed by an accelerometer for this event with predicted GW track overlaid.

 Noise probability behavior reasonable during known instances of loud environmental disturbances

> Top: constant-Q transform of LIGO Livingston GW strain during a thunderclap with simulated GW tracks overlaid. Middle: distribution of worst noise probabilities for simulated GW signals during thunder data. Bottom: constant-Q transform of thunder witness witch tracks overlaid.

- Apply automated method to O3 GWs
- Report highest P(noise) for each event
- No P(noise) exceeding 90%
- Look at high P(noise) events by hand
 - Some cases of coupling overestimation
 - Some cases show evidence for environmental contamination
- Evaluating just the worst cases by hand saves time

O4 Outlook

- O4 PEM injection campaign complete
 - Preliminary coupling functions released
- This calculation is run automatically for all O4 events below a 2/year false alarm rate threshold
 - 8 GW candidates (15 triggers) as of Friday afternoon...
- Produces webpage report with single-sentence recommendation for rapid response & event validation rota members
 - Minimal support for significant environmental noise
 - Substantial support for environmental noise
 - Contact PEM team for further analysis
 - Recommend times and frequencies for subtraction

Other work

- Watch arXiv for a manuscript about this soon...
- At lunch, ask me about other projects too:
 - Bursts of GWs from cosmic strings
 - Blip glitches
 - Pre-O4 coupling function injection campaign
 - Noise investigations

References

Janssens, K et al. 2023 PRD 107 022004 (Preprint 2209.00284)

Berger, B *et al.* 2023 *ApPhL* **122** 184101

Soni, S et al. 2020 CQG 38 025016 (Preprint 2007.14876)

Nguyen, P et al. 2021 CQG 38 145001 (Preprint 2101.09935)

Davis, D et al. 2021 CQG 38 135014 (Preprint 2101.11673)