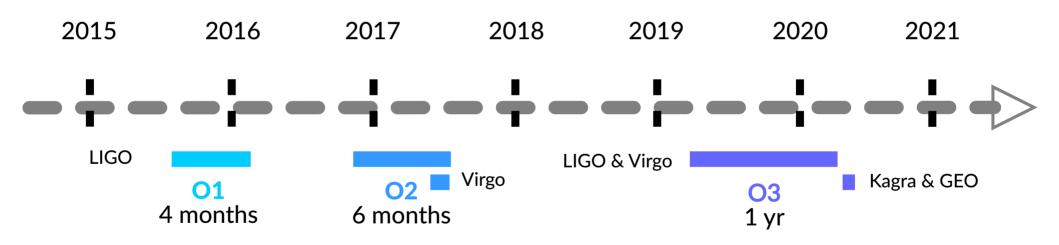
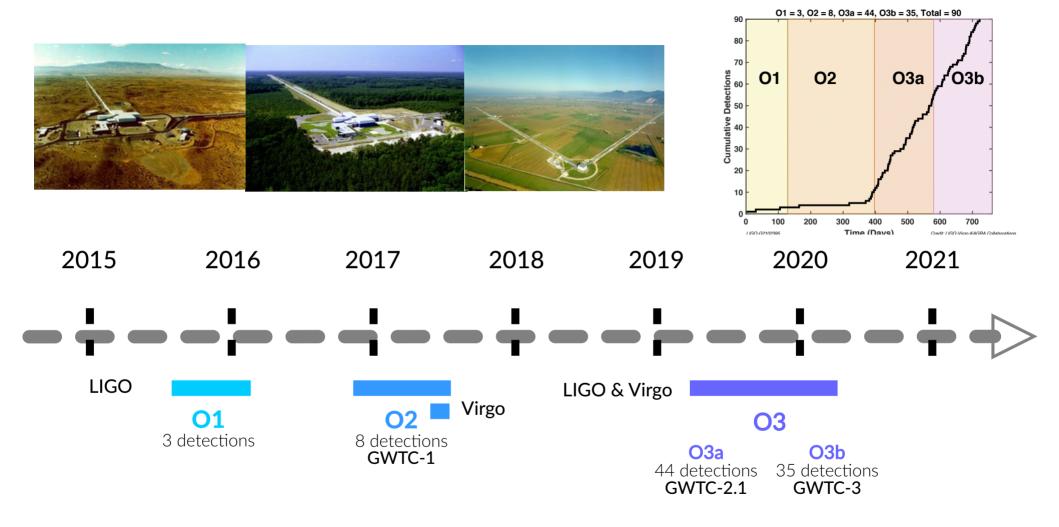
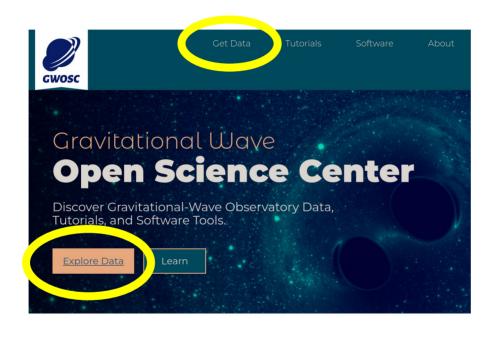
GW public data



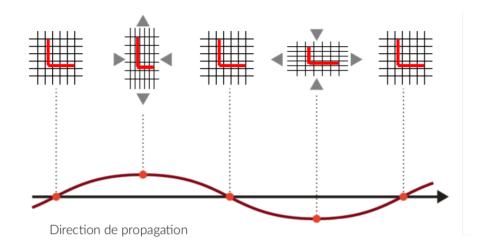

Eric Chassande-Mottin

AstroParticule et Cosmologie (APC) CNRS Université Paris Cité

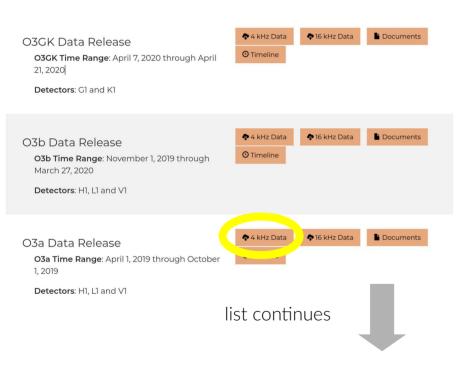

gwosc.org

Event Open Data Tutorials
Catalog Workshop

- The LIGO-Virgo-KAGRA Collaboration is committed to the principles of **open science**
 - Link to data management plan
- GW Open Science Center
 - Releases gravitational-wave data to the broader scientific community and to the public
 - Offers event catalogs with parameter estimations, posterior samples, strain data, injection and quality flag segments
 - Provides **documentation and tools** necessary to understand and use the data (tutorials, interactive web apps, ...)



Events and Catalogs	♣ Event Portal
Large Data Sets For users of computing clusters or if accessing large amounts of data, CernVM-FS is the preferred method to access public data.	■ CVMFS Docs
O3 Auxiliary Data Release Time Range: April 1, 2019 through March 27, 2020 Detectors: 86 channels from H1 and L1	l i Documents
O3GK Data Release O3GK Time Range: April 7, 2020 through April 21, 2020 Detectors: G1 and K1	◆ 4 kHz Data
O3b Data Release O3b Time Range: November 1, 2019 through March 27, 2020	♠ 4 kHz Data ♠ 16 kHz Data ♠ Documents ② Timeline


Gravitational wave strain (space-time deformation)

$$h(t) = rac{\delta \ell}{L}$$

Time series - 16 kHz sampling ("audio" band)

Continuous observation for ~1 yr typ. With many on/off interruptions

Available datasets

All you need to reproduce LIGO Virgo Kagra analyses

 "Bulk" data (various formats) and data quality with online documentation

O1: released in 2018

O2: released in Feb 2019

O3: released in Apr 2021 and Oct 2021

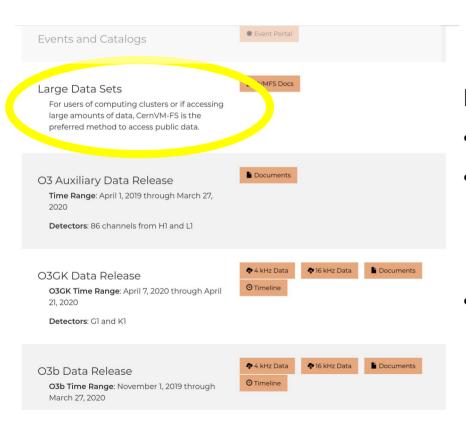
File by file access

Archive for O3b_4KHZ_R1 dataset

Each data file corresponds to 4096 seconds of GPS time, and may contain up to half a GB. The file may be downloaded in either HDF5 or Frame format For documentation, see the tutorials, O3b_4KHZ_R1 start GPS: 1256655618 UTC: 2019-11-01T15:00:00 O3b 4KHZ R1 end GPS: 1269363618 UTC: 2020-03-27T17:00:00 Next choose your gravitational wave detector: O O HI O LI Now choose the start and end time of the data that you want, either Universal time or GPS. Change either side and the other responds immediately. Universal Time (ISO8601) **GPS Time** OK Start Time 2019-11-01T15:00:00 1256655618 1269363618 OK **End Time** 2020-03-27T17:00:00 Choose your output format: Time series data in HDF5 and Frame files OTime series data in HDF5 and Frame files, with data quality guide Oincludes statistics of each file: min/max, band-limited RMS, etc. OJSON formatted table of files and data quality Click the button to continue Continue

Dataset: O3b_4KHZ_R1

GPS Time Interval: [1256655618, 1269363618]


Detector: V1

Note:

- Each file covers a 4096-second period, with strain data at either 16kHz or downsampled to 4 kHz.
- The time of the beginning of the file is shown as 'GPS start time', and is linked to a timeline showing which parts of the tile have science-mode data.
- The last column of the table shows the percentage of each file that has data.
- For instructions on downloading many files, see the Automatic Dovernor Tuto al.

Timeline	UTC	Mbytes	HDF5	Frame	Percent
1256652800	2019-11-01T14:13:02	38.2 MB	HDF5	Frame	30.2
1256656896	2019-11-01T15:21:18	124.4 MB	HDF5	Frame	100.0
1256660992	2019-11-01T16:29:34	124.1 MB	HDF5	Frame	99.8
1256665088	2019-11-01T17:37:50	123.9 MB	HDF5	Frame	99.6
1256669184	2019-11-01T18:46:06	124.1 MB	HDF5	<u>Frame</u>	99.8
1256673280	2019-11-01T19:54:22	124.3 MB	HDF5	<u>Frame</u>	100.0
1256677376	2019-11-01T21:02:38	124.3 MB	HDF5	<u>Frame</u>	100.0
1256681472	2019-11-01T22:10:54	124.3 MB	HDF5	Frame	100.0
1256685568	2019-11-01T23:19:10	124.1 MB	HDF5	Frame	99.8

Data access

Data can be accessed ...

- File by file through the GWOSC web site
- To download large datasets: CernVM File System [see this doc]

Distant disk partitions can be mounted on local computer Can be used with the Open Science Grid (US)

Programmatically through API (more later)

GWOSC

List contains 93 events.

Display all Display •

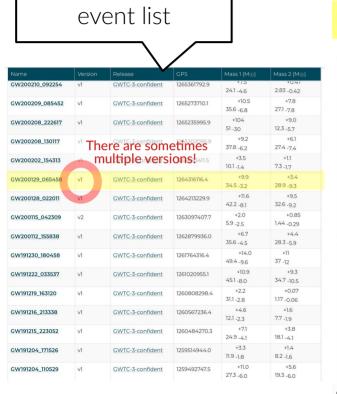
Name	Version	Release	GPS	Mass 1 (M⊙)	Mass 2 (M⊙)	Network SNR	Distance (Mpc)
GW200322_091133	v1	GWTC-3-confident	1268903511.3	+48 34 -18	+16.8 14.0 -8.7	+1.7 6.0 _{-1.2}	+7000 3600 ₋₂₀₀₀
GW200316_215756	v 1	GWTC-3-confident	1268431094.1	+10.2 13.1 -2.9	+1.9 7.8 -2.9	+0.4 10.3 -0.7	+470 1120 -440
GW200311_115853	V1	GWTC-3-confident	1267963151.3	+6.4 34.2 -3.8	+4.1 27.7 -5.9	+0.2 17.8 -0.2	+280 1170 -400
GW200308_173609	V1	GWTC-3-confident	1267724187.7	+11.2 36.4 -9.6	+7.2 13.8 -3.3	+0.5 7.1 _{-0.5}	+2700 5400 -2600
GW200306_093714	v 1	GWTC-3-confident	1267522652.1	+17.1 28.3 -7.7	+6.5 14.8 -6.4	+0.4 7.8 -0.6	+1700 2100 -1100
GW200302_015811	V1	GWTC-3-confident	1267149509.5	+8.7 37.8 -8.5	+8.1 20.0 -5.7	+0.3 10.8 _{-0.4}	+1020 1480 -700
GW200225_060421	V1	GWTC-3-confident	1266645879.3	+5.0 19.3 -3.0	+2.8 14.0 -3.5	+0.3 12.5 -0.4	+510 1150 -530
GW200224_222234	V1	GWTC-3-confident	1266618172.4	+6.9 40.0 -4.5	+5.0 32.5 -7.2	+0.2 20.0 -0.2	+490 1710 -640
GW200220_124850	v1	GWTC-3-confident	1266238148.1	+14.1 38.9 -8.6	+9.2 27.9 _{-9.0}	+0.3 8.5 -0.5	+2800 4000 -2200
GW200220_061928	v1	GWTC-3-confident	1266214786.7	+40 87 -23	+26 61 -25	+0.4 7.2 -0.7	+4800 6000 -3100
GW200219_094415	v1	GWTC-3-confident	1266140673.1	+10.1 37.5 -6.9	+7.4 27.9 -8.4	+0.3 10.7 -0.5	+1700 3400 -1500
GW200216_220804	v1	GWTC-3-confident	1265926102.8	+22 51 ₋ 13	+14 30 -16	+0.4 8.1 _{-0.5}	+3000 3800 -2000

Eff. Dist Mass m_1 m_2 ratio spin $D_{\rm L}/{\rm Gpc}$

Event portal

- Gravitational-wave Transient Catalog (GWTC)
 - Notable events in "discovery releases"
 - Four catalogs released so far
 - GWTC-1 (confident & marginal)
 - GWTC-2
 - GWTC-2.1 (confident, marginal and aux)
 - GWTC-3 (confident & marginal)
 - GWTC → cumulative
- The catalog can be queried

Online catalog query



6 Event Name:						
3 Release:	GWTC-1- GWTC-1- O1_O2-P O3_Disc	-confide Prelimin	ent ary			
• Mass 1 Range:	0	∞	• Mass 2 Range:	0	00	
1 Total Mass Range:	0	∞	final Mass Range:	0	∞	
Chirp Mass Range:	0	∞	① Detector Frame Chirp Mass Range:	0	∞	
① Distance (Mpc) Range:	0	∞	• Redshift Range:	0	∞	
Network SNR Range:	0	∞	θ χ _{eff} Range:	-1	1	
false Alarm Rate Range:	0	00	Pastro Range:	0	1	
3 UTC Time Range:						
3 GPS Time Range:						
Show only last version	X					
Output Format:	• HTML	O JSOI	N OCSV OASCII			
Submit Query						

From catalog to event

GW200129 065458 Release: GWTC-3-confident Event UID: GW200129 065458-v1 Names: GW200129 065458 GPS: 1264316116.4 UTC Time: 2020-01-29 06:54 GraceDB: S200129m GCN: Notices • Circulars Timeline: Ouery for seaments DOI: https://doi.org/10.7935/b024-1886 Data sourced from frame channels FrameChannels: [H1:DCS-CALIB STRAIN CLEAN SUB60HZ C01, L1:DCS-CALIB STRAIN CLEAN SUB60HZ C01, V1:Hrec hoft 16384Hz] Data sourced from frame types: FrameTypes: [H1 HOFT CLEAN SUB60HZ C01. L1 HOFT CLEAN SUB60HZ C01, V1Online] To open GWF files, use channels names as shown for GWTC-1:

data provenance

https://doi.org/10.7935/82H3-HH23

H1 strain 32sec • 16KHz: 32sec • 4KHz L1 strair 4096sec • 4KHz: GWF HDF TXT

bp #6

data snippet

search pipelines

pycbc_broad Search Pipeline
Date added: Sept. 13, 2021

pycbc_bbh Search Pipeline
Date added: Sept. 13, 2021

gstlal Search Pipeline
Date added: Sept. 13, 2021
show / hide parameters
Default SEARCH

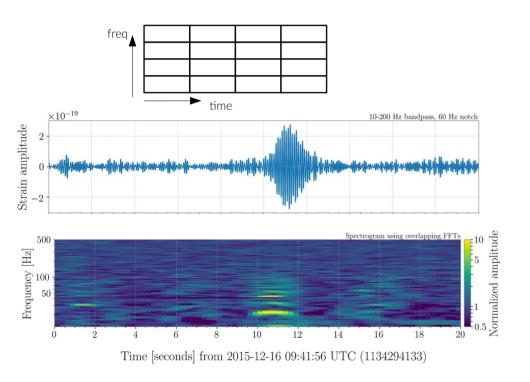
GWTC-3 PE for GW200129_065458

Date added: Nov. 1, 2021

show/ hide parameters

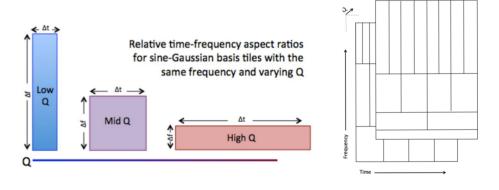
Source File

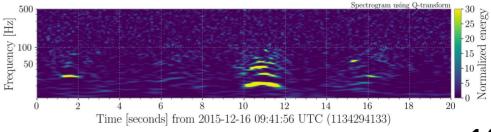
Posterior Samples in Zenodo

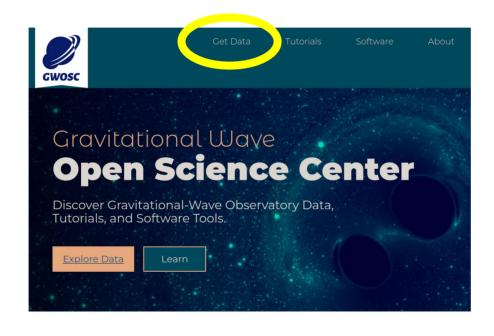

Skymap for GW200129_065458

Default PE

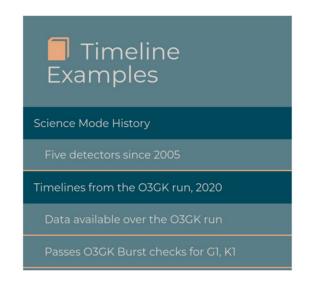
params estimation

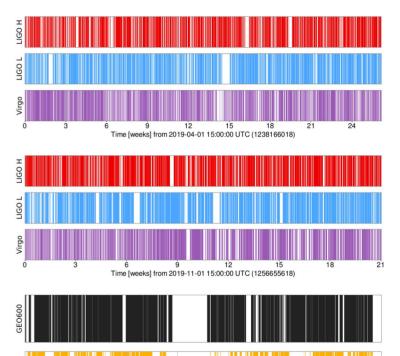

Time-frequency maps and Q transform


Spectrogram or short-time Fourier transform


Q transform

S. Chatterji et al. CQG (2010)





Timeline and data quality

Time [days] from 2020-04-07 08:00:00 UTC (1270281618)

Select data quality:

[DETECTOR]_[SEARCH TYPE]_[SEVERITY CATEGORY]

Ex: H1_BURST_CAT1, V1_CBC_CAT2, ...

Web API and software utilities

GWOSC Public API Documentation

The <u>Gravitational Wave Open Science Center</u> offers a public API, mostly in the form of JSON format that provides data on timeline segments, catalogs, list of datasets with and without bulk strain data, and single datasets.

If you are working in a Python project, we recommend installing the $\underline{\mathsf{gwosc}}$ Python client to interact with our API.

\$ pip install gwosc

https://gwosc.org/apidocs/

The data can be accessed programmatically using the public API

Timeline, archival data, event and catalogs

Python client https://pypi.org/project/gwosc/

You will learn how to use this package with Tutorial #1.1 "Discovering open data from GW obs"

Many other software utilities for signal simulation and analysis

Conclusions

Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

R. Abbott, ¹ H. Abe, ² F. Acernese, ^{3,4} K. Ackley, ⁵ S. Adhicary, ⁶ N. Adhikari, ⁷ R. X. Adhikari, ¹ V. K. Adkins, ⁸ V. B. Adya, ⁹ C. Affeldt, ^{10,11} D. Agarwal, ¹² M. Agathos, ^{13,14} O. D. Aguiar, ¹⁵ L. Aiello, ¹⁶ A. Ain, ¹⁷ P. Ajith, ¹⁸ T. Akutsu, ^{19,20} S. Albanesi, ^{21,22} R. A. Alfaidi, ²³ A. Al-Jodah, ²⁴ C. Alléné, ²⁵ A. Allocca, ^{26,4} M. Almualla, ²⁷ P. A. Altin, ⁹ A. Amato, ^{28,29} L. Amez-Droz, ³⁰ A. Amorosi, ³⁰ S. Anand, ¹

ABSTRACT

The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.

https://arxiv.org/abs/2302.03676

Looking for GW data? GWOSC is your friend :)
 ~15 TB of science data accessible under CC-BY

- A lot of documentation and ressources available – Check also our data papers!
- Ask questions or send feedback or suggestions
 User forum: http://ask.igwn.org
- If you use the data, please acknowledge

https://gwosc.org/acknowledgement/