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I. THE DISCRETISED F-STATISTIC

For a set of template parameters λ = (f0, f1, ..., α, δ, ...) the F-statistic defined in Eq. (110) of Jaranowski, Krolak,
and Schutz (gr-qc/9804014) is given by

F(λ) =
4

Sh(f0)T0

B|Fa(λ)|2 + A|Fb(λ)|2 − 2C<(Fa(λ)F ∗
b (λ))

D
, (1)

where T0 is the observation time, Sh(f0) is one-sided spectral density of the noise,

Fa(λ) =
∫ To/2

−To/2

x(t)a(t) exp[−2πiΦ(t, λ)] dt, (2)

Fb(λ) =
∫ To/2

−To/2

x(t)b(t) exp[−2πiΦ(t, λ)] dt, (3)

A := (a||a), B := (b||b), C := (a||b) and D = AB − C2 with

(x||y) :=
2
To

∫ To/2

−To/2

x(t)y(t) dt. (4)

LALDemod computes a discretised version of the above expressions for Fa and Fb,

Fa =
NM−1∑

i=0

xiaie
−2πiΦi∆t, (5)

Fb =
NM−1∑

i=0

xibie
−2πiΦi∆t. (6)

We divide the data into M short chunks of length TSFT each with N points. Note that T0 = MTSFT . The length
of these chunks is such that the amplitude modulation functions a(t) and b(t) do not change significantly so that we
can write,

Fa =
M−1∑
α=0

aα

N−1∑
j=0

xα,je
−2πiΦα,j ∆t, (7)

Fb =
M−1∑
α=0

bα

N−1∑
j=0

xα,je
−2πiΦα,j ∆t. (8)

The index in the sum above is i = Nα + j. Note that we can also write,

A =
2
M

M−1∑
α=0

aαaα, (9)

B =
2
M

M−1∑
α=0

bαbα, (10)

C =
2
M

M−1∑
α=0

aαbα. (11)

(12)
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Our data set is given in terms of Fourier transforms of these short data chunks (SFTs),

Xα,k =
N−1∑
k=0

xα,j e−2πijk/N . (13)

The inverses of the Fourier transforms are

xα,j =
1
N

N−1∑
k=0

Xα,k e2πijk/N . (14)

If we substitute this expression into, say Fa in Eq. 7, we obtain,

Fa =
∆t

N

M−1∑
α=0

aα

N−1∑
k=0

Xα,k

N−1∑
j=0

e−2πi(Φα,j−jk/N). (15)

There is a similar expression for Fb. In the following we will proceed with the calculations using Fa; the corresponding
results for Fb are completely analogous.

We assume the phase evolution is linear within a short chunk and Taylor expand the phase model about the middle
of each of the chunk,

Φα,j = Φα,1/2 + Φ̇α,1/2(tα,j − tα,1/2). (16)

Here, tα,j = (αN + j)∆t, so that,

Φα,j = Φα,1/2 + Φ̇α,1/2(j −N/2)∆t = Φα,1/2 + Φ̇α,1/2(j/N − 1/2)TSFT . (17)

The Taylor expansion of the phase model allows us to write Eq. 15 as,

Fa =
∆t

N

M−1∑
α=0

aα

N−1∑
k=0

Xα,k

N−1∑
j=0

e−2πi(Φα,1/2+Φ̇α,1/2(j/N−1/2)TSF T−jk/N).

=
∆t

N

M−1∑
α=0

aαe−2πi(Φα,1/2−Φ̇α,1/2TSF T /2)
N−1∑
k=0

Xα,k

N−1∑
j=0

e−2πi(Φ̇α,1/2TSF T−k)j/N . (18)

The last sum in this expression can be evaluated analytically. In particular,

N−1∑
j=0

zcj =
1− zNc

1− zc
. (19)

We take z = e, c = −ix/N , x = 2π(Φ̇α,1/2TSFT − k), so that the sum is given by,

N−1∑
j=0

e−ixj/N =
1− e−ix

1− e−ix/N
(20)

In the large N limit the exponent of the denominator will be small so that

1− e−ix

1− e−ix/N
≈ 1− e−ix

1− (1− ix/N)
=

iN

x
(e−ix − 1) = N(

sinx

x
− i

1− cos x

x
) (21)

So we can write,

Fa ≈ ∆t

M−1∑
α=0

aαe−2πiy
N−1∑
k=0

Xα,kPα,k (22)

with

y = Φα,1/2 − Φ̇α,1/2TSFT /2 (23)
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and the Dirichlet kernel,

Pα,k = sinx/x− i(1− cos x)/x, (24)

and

x = 2π(Φ̇α,1/2TSFT − k). (25)

The function Pα,k is very strongly peaked around x = 0, which is near a value of the frequency index k∗ =
floor(Φ̇α,1/2TSFT ). This means one only needs to evaluate the sum over k for a few terms ∆k around k∗. With this
in mind we write

Fa ≈ ∆t
M−1∑
α=0

aαe−2πiy
k∗+∆k∑

k=k∗−∆k

Xα,kPα,k. (26)

Similarly

Fb ≈ ∆t
M−1∑
α=0

bαe−2πiy
k∗+∆k∑

k=k∗−∆k

Xα,kPα,k. (27)

II. NORMALISATION OF THE DATA

Because the noise may vary from SFT to SFT, due to non-stationarity, and between frequency bins when the noise
is coloured we normalise our SFT data to absorb the 1/Sh(f0) term in the definition of the F-statistic.

In particular we take,

Xα,k −→ X ′
α,k =

Xα,k√
Sα,kTSFT

(28)

where Sα,k is an estimate of the one-sided power spectral density for the kth frequency bin of the αth SFT.
This means that in terms of the dimensionless

X̃α,k = ∆tX ′
α,k (29)

we can write

F̃a ≈
M−1∑
α=0

aαe−2πiy
k∗+∆k∑

k=k∗−∆k

X̃α,kPα,k, (30)

and

F̃b ≈
M−1∑
α=0

bαe−2πiy
k∗+∆k∑

k=k∗−∆k

X̃α,kPα,k, (31)

and thus

F =
4
M

B|F̃a|2 + A|F̃b|2 − 2C<(F̃aF̃ ∗
b )

D
. (32)

This is the quantity that is actually computed by LALDemod.

III. THE PHASES Φα,1/2 AND Φ̇α,1/2

Now, if one adopts the notation ∆Tα ≡
[
T (tα,1/2)− T (t0)

]
and Ṫα ≡ dT/dt(tα,1/2) the phase terms in the above

equation are given by (this is from the ComputeSky.c documentation)

Φα,1/2 = f0∆Tα +
1
2
f1∆T 2

α +
1
3
f2∆T 3

α +
1
4
f3∆T 4

α +
1
5
f4∆T 5

α +
1
6
f5∆T 6

α + ...

(33)

Φ̇α,1/2 = Ṫα

(
f0 + f1∆Tα + f2∆T 2

α + f3∆T 3
α + f4∆T 4

α + f5∆T 5
α + ...

)
. (34)
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These constants, for each value of α, require Ṫα and ∆Tα, which are calculated by a suitable timing routine.
In terms of these, x is given by,

x = 2π(f0ṪαTSFT + f1ṪαTSFT ∆Tα + f2ṪαTSFT ∆T 2
α + ...− k)

= 2π(
nspin∑
s=0

fsTSFT Ṫα∆T s
α − k) = 2π(

nspin∑
s=0

fsBsα − k). (35)

The Bsα are called sky-constants in various codes.
In terms of these, y is given by,

y = f0(∆Tα −
1
2
ṪαTSFT ) + f1(

1
2
∆T 2

α −
1
2

1
2
ṪαTSFT ∆Tα) + ...

=
nspin∑
s=0

fs(
1

s + 1
∆T s+1

α − 1
2
TSFT Ṫα∆T s

α) =
nspin∑
s=0

fsAsα. (36)

The Asα, like the Bsα are also called sky-constants.

IV. LALDEMOD FUNCTION DETAILS

LALDemod computes the F-statistic for a frequency band given some template parameters.
The first thing LALDemod does is to set up a look-up table that is used in the calculation of the Dirichlet kernel,

Eq. 21.
Then two arrays called xSum and ySum are computed. These arrays contain the phase evolution of the signal that

depends only on the spindown values (not the frequency). In particular,

xSum[alpha] =
nspin∑
s=1

fsBsα (37)

and

ySum[alpha] =
nspin∑
s=1

fsAsα. (38)

Note that both sums start at 1.
The first loop is a loop over frequencies, for each of these frequencies Fa and Fb will be evaluated and from them

the F-statistic computed.
Once the frequency is set, there is a loop in α over the SFTs. This loop corresponds to the outermost sum (the one

over α) in the expressions for Fa and Fb. For each α a pointer to the SFT data (variable Xalpha in the code), and
values for the amplitude modulation parameters aα (called a in the code) and bα (called b in the code) are assigned.

The line

xTemp = f ∗ skyConst[tempInt1[alpha]] + xSum[alpha]; (39)

computes the sum
∑nspin

s=0 fsBsα. The term skyConst[tempInt1[alpha]] = ṪαTSFT and xSum[alpha] =
∑nspin

s=1 fsBsα.
This variable is a real number however it is dimensionless and “index-like” (like f ∗ TSFT ).

Next the values of the sines and cosines in the Dirichlet kernel are computed. They need not be computed for every
k in the inner-most loop because the variable x in that loop (or in Eq. 26) will only vary by integer amounts (and the
sines and cosines will not change). Hence, they are only calculated once for a single value: the difference between the
value of xTemp and its integer part. Notice that what is called tcos in the code is actually cos x− 1.

Finally, before the inner-most loop, the variable tempFreq is re-assigned to be the angular distance between xTemp
and the smallest value of the frequency index that will contribute to the sum over terms in the Dirichlet kernel (the
number of these terms on either side of xTemp is params->Dterms). Also, the variable k1 is set to the frequency
index that corresponds to that distance.

The loop over terms in the Dirichlet kernel (loop over k), starts from the smallest value of the frequency index
that contributes to the calculation and increases to the largest value of the frequency index that contributes to the
calculation. Both of these bounds depend only on the number of terms we have decided to keep in the Dirichlet



5

k1

tempFreq /           (the second time it’s defined)2π

xTemp

tempFreq (the first time it’s defined)

FIG. 1: Illustration of variable setup before the innermost loop of LALDemod when params->Dterms=3. Frequency bins of
the SFT are shown as the small vertical lines with frequency increasing from left to right.

kernel. In this loop sftIndex is the index that corresponds to the actual data that was passed to LALDemod (since
the entire band of the SFT was not passed); params->ifmin contains the smallest value of the frequency index of the
original SFT data that is passed to LALDemod. The loop then combines the frequency bins that contribute to the
signal according to Eq. 26.

For example Figure 1 illustrates how this inner-most loop works with params->Dterms=3. The first time the
variable tempFreq is defined it is given by the difference between xTemp and its integer part. Then tempFreq is
defined to be the angular distance between xTemp and the smallest value of the frequency that will contribute to the
sum over k. Finally k1 is set to the smallest value of the frequency index that contributes to the sum, in this case
the integer part of xTemp-2. Then the look over k begins. For k=0 the value of x is the value of tempFreq, and we
divide the previously computed sinx and cos x− 1 by x to compute the Dirichlet kernel. Then the value of the index
of the data that is actually passed to LALDemod is computed, the data is assigned to that point and the product of
Xα,kPα,k is computed. For k=1, the value of tempFreq is decreased by 2π and so on...

After this loop the line

y = −LALTWOPI ∗ (f ∗ skyConst[tempInt1[alpha]− 1] + ySum[alpha]); (40)

computes y (this time with an extra factor of 2π). The term skyConst[tempInt1[alpha]− 1] = ∆Tα − 1
2 ṪαTSFT and

ySum[alpha] =
∑nspin

s=1 fsAsα.
And finally the amplitude modulation is folded in to evaluate Fa and Fb. When the loop over α (the SFTs) is

finished the F-statistic computed and we proceed to the next value of the frequency.


