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1 Introduction

The Laser Interferometer Gravitational Wave Observatory (LIGO) operates state-of-the-art
ground-based gravitational wave (GW) detectors that made the first direct detection of
GWs in 2015. Highly energetic astrophysical events generate GWs that propagate across
spacetime. These ripples in spacetime are detected by LIGO due to the induced change in
length of the interferometer arm. The resulting time-dependent data, strain h(t), encodes
the physical properties of the origin of GWs [1].

GWs reach the earth as an extremely faint signal inducing length changes smaller than
a proton diameter in LIGO’s 4 km long interferometer arms. To successfully detect such
a small effect, the LIGO detectors are designed to be exquisitely sensitive. The extreme
sensitivity makes these detectors vulnerable to terrestrial (environmental and instrumental)
noise. Despite all the noise shielding, a particular type of noise which causes false alarms in
GW search pipelines and adversely affects LIGO’s sensitivity are short-lived, transient noise
artifacts of largely unknown origins called “glitches”. Glitches plague the main channel of
the LIGO detectors which often results in false alarms [2]. Figure 1, adapted from [3], depicts
representative examples of glitches across the 21 classes from the Gravity Spy Catalog [2].

Figure 1: The figure, adapted from [3], depicts representative examples from 21 classes of
glitches from the Gravity Spy Catalog [2] found in the strain data across the 3 observing runs
of LIGO. The diversity in morphology across classes may hint towards various environmental
and instrumental origins of these noise transients which result in false alarms in LIGO GW
event search pipelines.

Along with the main channel, LIGO maintains a set of auxiliary channels to monitor the
instrument and its environment using various sensors. These auxiliary channels may bear
witness to the glitches. As a result, work has been done in associating noise transients within
the main channel to recorded loud trigger events within the auxiliary channels to learn more
about the origin of noise transients. By doing so, these witness auxiliary channels can then
be used as veto generators to remove time segments in the main channel data that contain
glitches [4].

Given the large number of auxiliary channels with an upper bound of O(105) and a wide
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variety of glitches that may be present, machine learning methods were employed to find
these witness auxiliary channels. Pipelines such as iDQ, a supervised low-latency glitch
prediction method which uses algorithms like the Ordered Veto List algorithm (OVL) were
developed to determine the probability of glitch occurrence within the main channel at time
t given the data recorded in auxiliary channels [5, 4].

Recent work by [6], on the other hand, utilized unsupervised algorithms such as matrix
and tensor factorizations to cluster triggers in a set of auxiliary channels as a method of
finding valid channels that can serve as witnesses to the main channel glitches [6]. This
method is unique from existing LIGO efforts in that, in addition to coming up with precise
veto generators, it has the capacity to discover groups of auxiliary channels associated with
certain glitches which may help domain experts generate hypotheses about the mechanism
that causes those glitches, test those hypotheses, and potentially fix the glitches at their
source.

In this work, our primary goal is to use the proposed method in [6] to explore different
clustering models to find sets of channels that bear witness to glitches. Figure 2, top depicts
a generic machine learning pipeline for reference and Figure 2, bottom depicts the end-
to-end machine learning pipeline that we will create to find and validate channels which
witness glitches. Our work may explore other features of the data associated with auxiliary
channel triggers (an example of which was signal-to-noise ratio and peak frequency in [6])
and possibly morphologies of glitches to better understand which channels are candidate
veto generators given a specific glitch type. We will use the rate of false and true positives
as a function of the SNR threshold for triggers in the auxiliary channels to examine and
select suitable veto generators. Finally, as a secondary and possibly long-term goal, we
will examine characteristics of the sets of veto generators to determine which channels are
associated with specific glitch classes which may then be communicated to domain experts
to localize and potentially fix the glitch at their source.

2 Objectives

We present a general outline of our objectives for this project.

• Design and implement clustering algorithms

In this work, we aim to explore different features of the data associated with auxil-
iary channels triggers (eg. signal-to-noise ratio and peak frequency in [6]) to devise
clustering algorithms for identifying groups of channels that witness glitches.

• Utilize clustering approaches to determine suitable veto generators.

Within this objective, we will compare the resulting number of false and true positives
within the candidate witness channels as a function of the signal-to-noise ratio (SNR)
threshold obtained from the candidate witnesses to determine if the channel can serve
as a suitable veto generator.
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Figure 2: (Top) Diagrammatic representation of a generic machine learning pipeline, where
a large dataset is processed to create a task-specific dataset. The smaller dataset is used to
train a specified machine learning model. Finally, the model is validated through testing.
(Bottom) Diagram of the proposed pipeline for finding witness channels of noise transients.
Triggers within the main channel are associated with events in auxiliary channels. The
triggers are clustered through algorithms such as tensor factorization to determine witness
channels. The false and true positives within the witness channels are analyzed to determine
if the candidate witness channels that bear witness to coincident triggers are suitable veto
generators [3].

3 Approach

In this work, our goal is to obtain a set of auxiliary channels that serve as witnesses to
glitches. These witness channels will serve to increase LIGO’s existing toolkit to veto glitch-
contaminated data.

Previous work developed tools such as procedural algorithms (eg. UPV and HVeto) and
more recently, the iDQ, a low-latency supervised machine learning algorithm to veto glitches
[7, 8, 4].

In this work, however, we propose to investigate extensions of recently-proposed matrix and
tensor factorization based unsupervised machine learning techniques by experimenting with
other parameters associated with auxiliary channel triggers to find different sets of veto
generators [6]. We will investigate two particular directions:

• Experimenting with different feature representations for the raw data. Previ-
ous work [6], utilized matrix and tensor decomposition (which incorporated frequency
as a tertiary tensor mode) to co-cluster triggers within the auxiliary channels. The
triggers were described by the signal-to-noise of the raw data. In this work, we will
experiment with other features of the auxiliary channels triggers like peak frequency,
bandwith, duration, amplitude, etc to find different sets of witness channels that may
serve as veto generators.

• Incorporating domain knowledge and prior information to the clustering
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analysis. Prior information about individual channel behavior or channel to channel
proximity/similarity) may aid in clustering glitches and creating models that maximize
the number of useful channels extracted.

From this approach, our goal is to obtain a set of suitable auxiliary channels that may serve
as veto generators.

4 Project Schedule

We present an outline of the projected project schedule.

• Before arrival: Complete background readings to gain familiarity with the approach
and techniques utilized. Familiarization with coding toolkits by reading documenta-
tion.

• Week 1: Initial orientation to gain familiarity with the toolkits and manipulating LIGO
datasets. Explore and discuss possible algorithms and clustering methods.

• Week 2-3: Explore an algorithm and clustering method. Tests results against previous
work.

• Week 4: Optimize methods to create a pipeline for exploring other clustering methods.

• Week 4-6: Complete interim report. Experiment with using other features of the raw
data during the clustering process.

• Week 7: If time permits, consider looking at vetoing glitches through morphologies by
analyzing spectrograms.

• Week 8: Begin drafting final project summary, while possibly completing possibly
unfinished tests from previous weeks. Exploration of extensions of the work to the
morphologies may be continued, if time permits.

• Week 9-10: Continue to finish the final project summary drafts and presentation.
Perform necessary revisions to complete the final report.
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