
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T2200207–v1 2022/09/20

Identifying Witnesses to LIGO

Glitches Using Auxiliary Channels

Luis Gabriel C. Bariuan

California Institute of Technology Massachusetts Institute of Technology
LIGO Project, MS 18-34 LIGO Project, Room NW22-295

Pasadena, CA 91125 Cambridge, MA 02139
Phone (626) 395-2129 Phone (617) 253-4824
Fax (626) 304-9834 Fax (617) 253-7014

E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

LIGO Hanford Observatory LIGO Livingston Observatory
Route 10, Mile Marker 2 19100 LIGO Lane

Richland, WA 99352 Livingston, LA 70754
Phone (509) 372-8106 Phone (225) 686-3100
Fax (509) 372-8137 Fax (225) 686-7189

E-mail: info@ligo.caltech.edu E-mail: info@ligo.caltech.edu

http://www.ligo.caltech.edu/

http://www.ligo.caltech.edu/

LIGO-T2200207–v1

Abstract

The exquisite sensitivity of the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) makes it extremely vulnerable to glitches, which are short-lived noise
transients that surpass the Gaussian-distributed background noise. Glitches occur in
the main channel at a high rate, in comparison to real signals. As a result, these
triggers can mask or mimic real gravitational wave signals derived from astrophysical
sources resulting in high false positive rate in the search pipelines. Along with the
main channel, LIGO maintains a large set of auxiliary channels. These auxiliary chan-
nels monitor the state of the detector and can witness these glitches. In this work, we
present an exploration of Boolean Matrix Factorization (BMF) as a possible method
for clustering loud triggers in a set of auxiliary channels that coincide with glitches
and selecting certain channels as glitch witnesses. We test the factorization against
the real data and simulated data, to determine how BMF performs in comparison to
other factorization models such as the Non-Negative Matrix Factorization (NMF). By
doing so, our goal is to examine if some Gravity Spy glitch classes have consistently
correlated loud triggers in certain sets of channels which may allow domain experts to
localize and fix glitches at their source.

1 Introduction

The Laser Interferometer Gravitational Wave Observatory (LIGO) is a ground-based grav-
itational wave (GW) detector that operates using the principles of a modified Michelson
interferometer. Highly energetic astrophysical events such as the mergers of compact ob-
jects (e.g., black holes, neutron stars) produce ripples in spacetime that travel at the speed
of light. The ripples induce changes in the spacetime metric which become manifest when
LIGO detects changes in the length of the interferometer arms. Hence, the resulting time-
dependent data, h(t), encodes the physical properties of the origin of the GW phenomena
[1].

The GW signals detected are extremely faint; the change in the length of the interferometer
arm is smaller than a proton’s diameter. The small amplitude of the signal requires the
LIGO detectors to have exquisite sensitivity. As a result, the detectors become vulnerable to
terrestrial noise, which may include environmental and instrumental noise. Despite efforts at
noise shielding, short-lived, noise transient artifacts often called “glitches” plague the main
channel. Glitches may mimic or mask real GW signals which may result in false alarms [2].

Alongside the main channel, LIGO maintains a large set of auxiliary channels, upper bounded
at O(105). These channels may bear witness to these glitches. As a result, previous work
has been dedicated to associating glitches within the main channel to loud triggers found
within auxiliary channels. By doing so, the aim is to find witness auxiliary channels that
may serve as veto generators in order remove time segments within the main channel data
contaminated with glitches.

Given the large number of degrees of freedom, algorithmic and machine learning methods
have been employed to tackle this problem. Algorithms such as hveto and UPV utilized
iterative processes to determine the most efficient witness channels [3, 4]. On the other
hand, pipelines such as iDQ, employed supervised machine learning techniques to determine

page 1

LIGO-T2200207–v1

in near real-time the probability of glitches within a time segment given the data recorded
within auxiliary channels. The iDQ pipeline was combined with algorithms such as the
Ordered Veto List (OVL) to determine suitable veto generators within a time segment [5].

Recent work, on the other hand, by [2], employed unsupervised machine learning techniques
such as Non-Negative Matrix Factorization (NMF) and CP/PARAFAC Tensor Decomposi-
tion to cluster triggers within auxiliary channels as a method of finding valid veto generators.
This method is unique in that it searches for witness channels in an “all-at-once” fashion,
in contrast to previous methods which relied on iteration. In addition to determining veto
generators, this method is able to discover groups of auxiliary channels associated with
glitch morphologies which may help domain experts discover glitch generation mechanisms
to potentially fix the glitches at their source.

2 Background and Motivation

We utilize the proposed pipeline of vetoing glitches established by [2] to explore various
models (e.g., factorization techniques, clustering methods) to compare with existing results
using various metrics such as homogeneity and coverage. The goals are to find sets of
auxiliary channels which may serve as veto generators and to use the techniques to co-cluster
information about glitch morphology classes to channels based on data obtained from the
Gravity Spy catalog. This information can be relayed to domain experts who may be able
to localize and fix the source of the glitches at their source.

To approach this problem, we utilized the time-dependent data recorded through the main
channel and the auxiliary channels. Loud triggers defined to be recorded signals that have
signal-to-noise ratio SNR ≥ 7.5, which may include glitches. The trigger and channel infor-
mation are converted into a data matrix Z ∈ R|G|×|A| and a 3-mode tensor χ ∈ R|G|×|A|×|F |,
where |G| is the number of glitches, |A| is the number of auxiliary channels, and |F | is the
number of features in the tertiary tensor mode.

Given the data matrix, we aimed to decouple glitch and channel information using Boolean
Matrix Factorization (BMF), which simplifies the analysis by binarization. Instead of using
the SNR to encode the information about the glitches as in the case of the two models
explored in [2], BMF only encodes information about the presence or absence of glitches.

Boolean Matrix Factorization (BMF) is a method developed to factorize a data matrix Z
to two separate factor matrices, such that Z ≈ XY . Although this method works using the
same principle as traditional factorization methods, the matrix decomposition is performed
over the Boolean semi-ring B. More explicitly, if we apply this factorization method to the
data matrix, we can decompose Z ∈ {1, 0}|G|×|A| such that in index notation:

Zij ≈ (X ◦ Y)ij =
K∨
l=1

BilClj, (1)

where we define X ∈ {0, 1}|G|×K and Y ∈ {0, 1}K×|A|, and K << min{|G|, |A|}, the rank of
the data matrix [6].

page 2

LIGO-T2200207–v1

To do this, BMF finds X and Y such that the “distance”, defined to be the Frobenius norm
||.||F of Z −X ◦ Y is minimized. Explicitly, BMF performs the minimization as:

||Z −X ◦ Y ||2F =
∑
i,j

Zij ⊕ (X ◦ Y)ij. (2)

Once the matrices are factored, X and Y become highly interpretable due to the binary
nature of the data. In particular, we can use X and Y to learn more information about the
associated glitches and auxiliary channels using co-clustering [6, 2].

3 Methods

We test the efficacy of the BMF model and compare it to NMF in two different ways:
simulated data and real data. The simulated data allows us to verify the ability of BMF
to recover known structures encoded with simulated glitch classes and their couplings to
different channels as they are injected to a data matrix. The real data, which does not have
the ground-truth about the association of glitch classes to channels then tests out the ability
of BMF in capturing latent patterns within the channel space.

For this work, we utilized the BMF implementation BooleanFactorization.1. This particu-
lar implentation utilizes posterior inference via message passing to perform the factorization
[7]. We set the number of maximum message passing (iterations) to 500.

3.1 Simulated Data

3.1.1 Synthetic Data Generator

We established a synthetic data generator that aims to mimic the data matrix obtained from
LIGO through the pipeline established by [2]. By doing so, we can use the generated data
matrices as a controllable testbed that helps us determine how our proposed methods behave
in the presence of different kinds of patterns, before we attempt to identify them “in the
wild” given the open-ended nature of the problem.

First, we generate a glitch catalog that emulates the Gravity Spy Catalog. To do this,
we created a dictionary which associates a glitch class to a set of channels. In this case,
we simply label as “gs i”, where i denotes the i-th glitch class in the catalog. Each glitch
class is associated randomly with a set of channels ranging between nc

min = 3 to nc
max = 6,

determined randomly. Note that for cases which require a tertiary tensor mode, the generator
also appends a feature value to each class that allow for the generation of the third tensor
mode.

Using the generated channels, we can cluster glitch classes in multiple ways. One is to have
a proportion of the glitch classes share a set of channels, which represents multiple glitches
being triggered by the same source. Alternatively, we cluster glitch classes such that a given
morphology can be triggered by different sets of channels. Finally, we can also generate a
catalog in which the channels associated between different glitch classes are considered to be

1https://github.com/mravanba/BooleanFactorization

page 3

https://github.com/mravanba/BooleanFactorization

LIGO-T2200207–v1

orthogonal. In this work, we explore the ability of BMF to recover completely orthogonal
glitch classes.

We use the information encoded in the glitch class catalog to generate data matrices and
tensors, where entries represent the SNR value associated to a glitch, channel, and possibly
tensor features. We will discuss, in explicit detail, the construction of the synthetic data
matrix. First, an empty matrix is constructed. At each entry, an exponentially-distributed
background noise described by the parameter λb is randomly generated. Then, we iterate
overall all the rows to inject the glitch. At each row, a glitch class is randomly selected
among the catalog of glitches along with the associated channels. The selection of the glitch
class is described by a probability distribution, which we can modify and skew to bias certain
classes. This is aimed to simulate particularly dominant glitch classes within the real data.

Each of the channels associated with a glitch class can be mapped directly to the columns
of the data matrix. Using an exponential distribution described by the parameter λg, a
glitch is generated at the associated columns to the glitch class. Note that for this work, the
relationship between λb and λg is an order of magnitude (factor of 10). We then apply the
“loud” trigger threshold and zero out any entry less than the threshold of SNR ≥ 7.5. Note
that the selection of this threshold is arbitrary for the synthetic data, the relative differences
between the SNR values are the most relevant for our analysis. For the application to BMF,
we simply replace all non-zero matrix elements that meet the threshold criterion with “1”.
Note that the tensor generation works similarly, with the exception of the third mode, where
instead the signal is generated with reference to the i-th glitch and j-th auxiliary channel,
and k-th feature bin. Overall, the resulting matrices and tensors are sparse, which to a
first approximation matches the behavior of data collected. Note that the feature bin may
represent other features of the data (e.g., frequency with peak SNR as in [2]).

In order to gain insight to the structure of the data, we performed Singular Value Decompo-
sition (SVD) and plot the singular values of the constructed data matrices. Figure 1 plots
the singular values for different data matrices sampled from different glitch class catalogs
generated using the synthetic data generator. For comparison, we plot the singular values of
a data matrix obtained from the Livingston detector between September 29-30, 2019. The
resulting singular values across the simulated and real datasets indicate a fairly low cutoff
for the rapid decline in the magnitude of singular values which suggests a low-rank structure
across the data.

3.1.2 Simulated Data

For the simulated data, we examined an orthogonal glitch catalog. An orthogonal glitch
catalog is defined such that the associated channels in a given glitch class does has no overlap
with the associated channels of another glitch class. This mimics the notion that each of the
glitch classes have a well-determined origin. Within the glitch catalog, we also designate that
50% of the glitch classes have three different sets of associated channels. This represents a
more non-trivial origin for a given glitch class, where a single instance may be derived from
multiple sources. The other half of glitch classes are independent and orthogonal. We note
that within our simulations, the number of channels associated with glitch classes is not
necessarily the same as the number of channels injected within a data matrix since we work

page 4

LIGO-T2200207–v1

0 20 40 60 80 100
Singular number

100

101

102

Si
ng

ul
ar

 v
al

ue

100 glitches
1000 glitches
Real Data, 728 glitches

0 20 40 60 80 100
Singular number

10 1

100

101

102

Si
ng

ul
ar

 v
al

ue

100 glitches
1000 glitches
Real Data, 728 glitches

Figure 1: Singular values plot across four different Boolean data matrices. (Upper): Singular
values plot of the data matrix generated with 100 and 1000 glitches sourced from a glitch
catalog that had 50% of glitch classes share one channel. The upper plot represents a scenario
where different glitch classes that may occur from similar sources. (Lower): Singular values
plot of the data matrix generated with 100 and 1000 glitches sourced from a glitch catalog
where a given glitch class can have multiple sets of auxiliary channels associated. The lower
plot simulates a scenario glitch classes that could be sourced from different sets of auxiliary
channels. For comparison to a real dataset, we plot the singular values of a data matrix with
728 glitches and 803 channels obtained from the Livingston detector between September
29-30, 2019 (blue). Overall, the plots indicate a fairly steep cutoff within the low singular
index regime, despite different sample sizes, which suggests that a low-rank approximation
should work well within BMF and other low-rank factorization models.

under the assumption that a subset of channels are not involved in glitch generation.

We generated data matrices with 2000 glitches and 200 channels, which provides a compara-
ble size to real data matrices collected over a 4-day period. We factored the generated data
matrix Z to ≈ XY at rank K, where X is the matrix associated with glitches and Y is the
matrix associated with the channels. We treat rank as a hyper-parameter and performed a
grid-search across different values of K ∈ [5, 50]. We then calculate channel coverage and
channel precision, within the context of the simulated data to verify how well BMF recovers
an injected structure. We then compare our results to a data matrix factorized using Non-
Negative Matrix Factorization (NMF), which factorizes the data matrix over the positive
real semi-ring R>0 [2].

Channel coverage is defined as the number of channels recovered versus the number of chan-
nels injected (we expect to recover). To calculate this quantity, we examine the columns
of the Y T matrix. We then take the associated row indices of the entries in each column
that are non-zero (in this case “1”). These indices represent the channels that are recovered
after applying the factorization. We then tabulate the number of “1”s and that represents
the number of channels recovered Nc,rec. We assume using the Law of Large Numbers, that
given the large number of glitches simulated, all the channels Ntotal involved with a glitch

page 5

LIGO-T2200207–v1

class are simulated. Hence, channel coverage is defined as Nc,rec/Ntotal for this particular
set of simulations. Figure 2 plots the average channel coverage and the 1σ error for the
completely orthogonal and partially orthogonal dataset for 10 simulations factored across
different ranks K ∈ [5, 50].2 Overall, channel coverage using the BMF model greatly im-
proves and approaches unity faster than NMF as the rank of the decomposition increases
which is indicative that the model is capable of recovering injected structures, such as the
association of glitch classes to channels. Comparatively, the NMF model performs well at
high ranks. These results indicate that both factorization models are valid ways of finding
associations between glitches and channels.

Channel precision, on the other hand, is defined as how well the channels recovered are
associated with the correct glitches. To calculate this quantity, we examine both columns of
the X (glitch) and Y T channel matrix. First, we determine, which glitches are associated
with a column in X. This is done by finding the row indices of entries that have a “1”
entry. We can then associate these indices with the ordered list of generated glitches and the
associated glitch classes, which is stored during data generation. We can then generate the
list of channels associated with the columns of X by examining the glitch class catalog. This
creates a K-length list of channel sets which we denote as CX . We can then cross-reference
CX with the channel indices obtained from examining the respective columns of Y T . We
denote this K-length list of channel sets obtained from Y as CY T . Using these two list of
sets CX and CY , we can define channel precision PC as:

PC =
1

K

K∑
i=1

|CX,i ∩ CY T ,i|
max (|CX,i|, |CY T ,i|)

, (3)

where the quantity is calculated per-column and averaged across all K-columns within a
decomposition. Figure 2 plots channel precision for a simulated data matrix factorized across
different ranks K ∈ [5, 50]. To a first, approximation, we find a decreasing trend in precision
for a data matrix factorized using BMF and NMF across different ranks, which suggests
that utilizing high-ranks within the model likely generates degeneracies and instabilities
across columns. Furthermore, NMF demonstrates a much higher value for precision than
BMF, which suggests that although BMF is able to cover more channels at lower ranks, a
tradeoff is the lower precision due to the ”over-return” of injected channels. Hence, a more
intermediate rank is likely a more suitable regime to utilize the factorization models.

We can also perform a set of calculation much closer to the scenario within the real data
where we do not have the ground truth for which glitch event is associated with subsets of
channel. Instead, we only possess information about the glitch events and their classification
within the Gravity Spy Catalog. Hence, calculating channel coverage and precision is not
possible. Instead, we calculate glitch class coverage and homogeneity.

Glitch class coverage is defined similarly to channel coverage. However, the ratio is the
number of glitch classes that are captured versus the total number of glitch classes that are
supposed to be recovered. We perform the same assumptions of using the Law of Large
Numbers as in the case of channel coverage.

2For the rest of this work, we define the 1σ error to be the standard error of the mean.

page 6

LIGO-T2200207–v1

10 20 30 40 50
Rank

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Ch

an
ne

l C
ov

er
ag

e

Orthogonal Dataset, Coverage

NMF
BMF

10 20 30 40 50
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ch
an

ne
l P

re
cis

io
n

Orthogonal Dataset, Precision
NMF
BMF

Figure 2: Left : Plot of the average channel coverage for the orthogonal dataset with the 1σ
error across different factorization ranks K using NMF (red) and BMF (blue). Each point
is the average across 10 simulations. Right : Plot of the average channel precision for the
orthogonal dataset with the 1σ error across different factorization ranks K using NMF (red)
and BMF (blue). Each point is the average across 10 simulations. The results indicate that
for both NMF and BMF coverage can improve at higher ranks. On the other hand, NMF
consistently has better channel precision. The low precision of BMF is primarily driven by
errors in the recovered channel, whereby more channels than injected are captured by the
model which is also consitent with the high channel coverage of BMF.

Homogeneity, on the other hand, is defined to be:

H =
1

K

K∑
i=1

1

Ni

, (4)

where Ni is the number of unique labels of the i-th factor (columns of Y T). Note that
highly homogeneous auxiliary channel clusters that correspond to gravity classes signifies a
homogeneity value close to 1. Figure 3 plots the glitch class coverage and homogeneity for the
simulated dataset using both NMF and BMF factorization models. As expected, both NMF
and BMF recover high coverage values at higher ranks, as expected, based on the channel
coverage behavior. For homogeneity, both models return fairly high values (> 0.60), which
suggests that the factor columns are considered to be more “pure”. Furthermore, NMF
returns far higher homogeneity values which suggests that the binarization of the dataset
that contributes to the recovery of the spurious channels leads to less pure columns within
the glitch factor matrix.

3.2 Real Data

We divide this sub-section into three parts. The first part provides a short discussion on
the data collection of this pipeline. We then proceed to discussing the use of the pipeline to
find veto generators. Finally, we explore co-clustering and a brief discussion to demonstrate
a proof-of-concept that aims to use use the pipeline to find class-specific veto generators.

page 7

LIGO-T2200207–v1

10 20 30 40 50
Rank

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Av
er

ag
e

Co
ve

ra
ge

Orthogonal Dataset, Glitch Class Coverage

NMF
BMF

10 20 30 40 50
Rank

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Ho
m

og
en

ei
ty

Orthogonal Dataset, Homogeneity

NMF
BMF

Figure 3: Left : Plot of the average glitch coverage for the orthogonal dataset with the
1σ error across different factorization ranks K using NMF (red) and BMF (blue). Each
point is the average across 10 simulations. Right : Plot of the average homogeneity for the
orthogonal dataset with the 1σ error across different factorization ranks K using NMF (red)
and BMF (blue). Each point is the average across 10 simulations. The results indicate
that for both NMF and BMF glitch coverage can improves at higher ranks. The relatively
high homogeneity values for both NMF and BMF indicate that the underlying structure of
the dataset in terms of the associated channels to glitch classes is orthogonal. The higher
homogeneity values of NMF indicate “purer” factors which matches the channel precision
behavior, where BMF tends to recover more spurious channels.

3.2.1 Data Collection

We collected data from the first week of O3b runs of the Livingston detector using the
Omicron trigger catalog. More specifically, we gathered data between November 1-4, 2019
for the training interval and November 5-6, 2019 for the validation interval. We collected
2402 glitch events and we utilized 803 pre-selected safe auxiliary channels (channels that do
not witness real GW signals) for our analysis.

3.2.2 Veto Generation

Using the pipeline by [2], we performed both BMF and NMF factorization at K = 20 on
the training dataset. We find 20 candidate channels from the channel factor matrix. More
specifically, we selected the channels that corresponded to the non-zero values in the column
matrix for BMF or the values that comprise 90% of the norm of the column for NMF.
To determine whether these candidate channels are “good” witnesses, we plot the True
Positive/False Positive Curve versus SNR threshold. A “good” witness channel is defined
when the True Positive Rate (TPR) becomes greater than the False Positive Rate (FPR) at
a given SNR threshold value. By doing so, we are able to determine that the channel is able
to witness the triggers that is coincident with the glitches events. Using this criteria, we
find a single good witness channel using both NMF and BMF, which indicates that despite
binarization, BMF is comparable to NMF in finding veto generators. Figure 4 plots the
TPR/FPR versus SNR threshold for the selected veto generator.

page 8

LIGO-T2200207–v1

Figure 4: True Positive/False Positive versus SNR threshold for the selected good veto
generator (L1:ASC-X TR A NSUM OUT DQ) applied on the evaluation dataset. The TPR
surpasses the FPR approximately around an SNR value of 25. This suggests that this channel
is a good witness.

3.2.3 Co-clustering

For the real-data, we do not have information about the direct association between glitch
events. To obtain information about the performance of both NMF and BMF, we calculate
the glitch class coverage for the training dataset. We then calculate homogeneity to deter-
mine whether the glitch classes are considered “true” glitch classes. We want to examine
whether a given glitch class is witnessed by the same channels or by multiple sets of channels
that differ at each instance. This would allow us to examine whether or not the glitch classes
have different sources despite the similarities in morphological structure presented. Figure 5
plots the coverage and homogeneity for the training datsaset across 10 runs of the factoriza-
tion at different ranks K ∈ [5, 50]. We find that both models have increasing coverage as K
increases, which matches the observed behavior in the simulated data. On the other hand,
the homogeneity values are generally lower for both models across different K values we
sampled. Compared to the highly homogeneous sample for the simulated dataset, the real
dataset presents as heterogeneous, which indicates that despite visual similarities in their
manifestation within the main channel, the different Gravity Spy classes, on average, do not
have a consistent representation within the auxiliary channel space.

Using co-clustering, the method we present in this work can also determine subsets of chan-
nel witnesses to subsets of glitches of a given glitch classification. As a proof-of-concept, we
present our analysis on the Tomte glitch which is the dominant glitch classification for events
within our dataset. We examined columns in the glitch matrices generated by both NMF
and BMF and selected columns where the majority label is Tomte (> 50%). We examined
the corresponding columns in the channel matrices to select for the channels that witnessed
the glitch events captured by the factors of the glitch matrix. We performed this analysis
across 10 runs on the simulated data. We obtained a list of channels across the 10 runs. This
list of channels, according to both NMF and BMF, witness the glitch events captured within

page 9

LIGO-T2200207–v1

10 20 30 40 50
Rank

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
Co

ve
ra

ge

Real Data, Coverage

NMF
BMF

10 20 30 40 50
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ho
m

og
en

ei
ty

Real Data, Homogeneity
NMF
BMF

Figure 5: Left : Plot of the average coverage for the real dataset with the 1σ error across
different factorization ranks K using NMF (red) and BMF (blue). Each point is the average
across 10 runs on the training dataset. We find good coverage for both NMF and BMF
as rank K increases. Right : Plot of the average homogeneity for the real dataset with the
1σ error across different factorization ranks K using NMF (red) and BMF (blue). Each
point is the average across 10 runs. The results indicate that the glitch classes within the
real dataset are heterogeneous. Furthermore, NMF recovers lower homogeneity values which
suggests that a feature-based model versus a binary model results in more heterogeneous
clusters.

the Tomte-dominated columns. We take the intersection of the channel lists generated by the
two models. We find three channels selected by both NMF and BMF across the 10 runs on
the training dataset. The sets of channels are {L1:HPI-HAM3 BLND L4C RY IN1 DQ,
L1:HPI-HAM3 BLND L4C VP IN1 DQ, L1:HPI-HAM4 BLND L4C RZ IN1 DQ}. Using
the criteria for a “good” veto generator, we do not find these three channels to be good
witnesses. More analysis on other glitch classes and using other sets of auxiliary channels is
reserved for future work.

4 Conclusion

In this work, we explored BMF as a model for classifying and clustering glitches. We find
that despite binarization, BMF remains comparable to NMF in finding veto generators.
But the pipeline we explored, could also go beyond finding witnesses. More specifically,
we can use the pipeline to perform co-clustering to determine associations between glitch
events and subsets of auxiliary channels. Using this technique, we explored simulated and
real data. We find that applied to simulated data, where the glitch classes are orthogonal,
which corresponds to non-overlapping channel sets assigned to glitch classes, we find high
glitch class coverage and homogeneity for both models. This suggests that the classes within
the simulated data are considered to be “pure” classes. On the other hand, the real data
presents lower homogeneity which indicates that the glitch classes are not as pure. This
implies that despite visual similarities manifested within the main channel as determined by
the Gravity Spy Catalog, the glitch classes do not have a simple representation within the
auxiliary channel space.

page 10

LIGO-T2200207–v1

The pipeline we explored is robust in its ability to extract information about glitch events
and their witness channels. This information can be relayed to domain experts who can
localize and fix the problem at their source. Furthermore, the pipeline is flexible for more
future explorations such as:

• Determining whether a Gravity Spy glitch class is a true class. Despite different glitch
events being classified under the same Gravity Spy class, our results indicate that
these classes are not “true” classes, in the sense that despite visual similarity within
the main channel, the glitch events are derived from different sources. Hence, an
avenue of exploration is to examine each individual glitch class to determine whether
the specific class is witness by a single set of channels or by multiple sets of channels.

• Exploring other factorization models. One such example is using Coupled Matrix-
Tensor factorization to approach a glitch morphology-based analysis. To do this, we
can utilize the 1-1 correspondence between the data matrix or tensor and the matrix
that contains information about the trigger, in this case, the gravity spy label matrix.
As a result, we can express the “coupled” data as a factorization, where the coupled
mode shares the same latent factor variable. This would enable joint clustering of
the two-datasets and the structure of the labeled dataset will (ideally) influence the
extracted factors in such a way that triggers that cluster within the same latent factor
will be morphologically similar, on the basis of the information that the second matrix
is providing. By doing so, our aim is to discover morphologically coherent glitches and
identify potential Gravity spy glitches which consistently exhibit the same behavior in
the auxiliary channel space. Hence, we can potentially point to a consistent mechanism
which generates glitches which can help domain experts localize and possibly fix the
problem at the source.

• Exploring using more channels for the analysis. The auxiliary channel space contains
a large amount of channels O(105). For this work, we only explored 803 safe channels.
An avenue of exploration is using other safe channels to determine whether they are
able to better witness glitch events.

• Exploring using other features of the triggers. Previous work by [2] utilized frequency
during the peak SNR as a feature mode. The pipeline allows for explorations of other
features such as bandwith, amplitude, duration, and more.

Acknowledgements

L.B. was supported by the LIGO SURF program. The LIGO SURF program is funded by
the National Science Foundation. L.B. would also like to thank Prof. Vagelis Papalexakis,
Rutuja Gurav, Prof. Jon Richardson, mentors, LIGO SURF program, Caltech, UCR, and
fellow students for their support in this program.

L.B. utilized the LDG and LIGO Compute Resources for this project.

page 11

LIGO-T2200207–v1

References

[1] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger.
Phys. Rev. Lett., 116(6):061102, 2016.

[2] R. Gurav, B. Barish, G. Vajente, and E. Papalexakis. Unsupervised matrix and tensor
factorization for LIGO glitch identification using auxiliary channels. Association for the
Advancement of Artificial Intelligence, 2020.

[3] Joshua R. Smith, Thomas Abbott, Eiichi Hirose, Nicolas Leroy, Duncan MacLeod,
Jessica McIver, Peter Saulson, and Peter Shawhan. A hierarchical method for veto-
ing noise transients in gravitational-wave detectors. Classical and Quantum Gravity,
28(23):235005, December 2011.

[4] Tomoki Isogai. Used percentage veto for LIGO and virgo binary inspiral searches. J.
Phys. Conf. Ser., 243:012005, 2010.

[5] Reed Essick, Patrick Godwin, Chad Hanna, Lindy Blackburn, and Erik Katsavounidis.
iDQ: Statistical Inference of Non-Gaussian Noise with Auxiliary Degrees of Freedom in
Gravitational-Wave Detectors. arXiv e-prints, page arXiv:2005.12761, May 2020.

[6] Pauli Miettinen and Stefan Neumann. Recent Developments in Boolean Matrix Factor-
ization. arXiv e-prints, page arXiv:2012.03127, December 2020.

[7] Siamak Ravanbakhsh, Barnabas Poczos, and Russell Greiner. Boolean Matrix Factoriza-
tion and Noisy Completion via Message Passing. arXiv e-prints, page arXiv:1509.08535,
September 2015.

page 12

	Introduction
	Background and Motivation
	Methods
	Simulated Data
	Synthetic Data Generator
	Simulated Data

	Real Data
	Data Collection
	Veto Generation
	Co-clustering

	Conclusion

