
Comparison of Hveto and UPV

Xinyan Xiang, Ben Aoki-Sherwood, Jay Tasson, Florent Robinet, Nelson Christensen

Used Percentage Veto and Hierarchical Veto

- Both algorithms veto triggers in the gravitational wave strain channel by comparing strain channel triggers with triggers in auxiliary channels.
- Virgo collaboration: Used Percentage Veto algorithm (UPV)
- LIGO: Hierarchical Veto algorithm (Hveto)

How each algorithm functions?

Main Differences:

- Configuration values
- Correlation:
 - Used percentage
 - Significance

Used Percentage(
$$\rho$$
) $\equiv \frac{100 \times N_{\text{coinc}}^{\text{aux}}(\rho)}{N_{\text{Total}}^{\text{aux}}(\rho)}$

$$S = -\log_{10} \left(\sum_{k=n}^{\infty} P(\mu, k) \right)$$

Comparison Runs -- Multiple channels (February 7 - February 14)

	Min SNR	Frequency Range (Hz)	Flag
Hveto	7	10-2000	DMT-ANA LYSIS_R EADY:1
UPV	7	10-2000	DMT-ANA LYSIS_R EADY:1

Step 1 : ran both algorithms with the same parameters over a full channel list on the length of a day

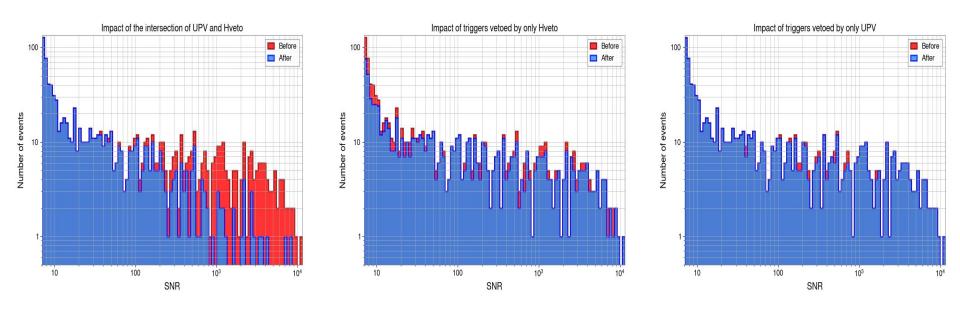
Step 2: for each algorithm, select all round winners on each day of the chosen week

Step 3: ran both algorithms with the same parameters over their own winner channels on the length of a week.

Channels: round winners for each day (February 7 - February 14)

UPV

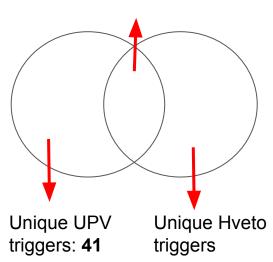
H1:LSC-REFL_A_LF_OUT_DQ H1:ASC-Y_TR_A_NSUM_OUT_DQ H1:ASC-Y_TR_B_NSUM_OUT_DQ H1:ASC-X_TR_B_NSUM_OUT_DQ H1:LSC-POP_A_LF_OUT_DQ

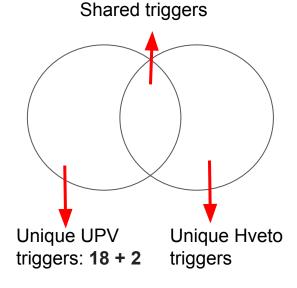

Hveto

H1:LSC-POP A LF OUT DQ H1:OMC-LSC | OUT DQ H1:PEM-EX ADC 0 19 OUT DQ H1:LSC-MICH IN1 DQ H1:ASC-DHARD P OUT DQ H1:LSC-PRCL OUT DQ H1:LSC-POP A RF45 Q ERR DQ H1:LSC-PRCL IN1 DQ H1:ISI-HAM6 BLND GS13Y IN1 DQ H1:LSC-REFL A LF OUT DQ H1:SQZ-LO SERVO CTRL OUT DQ H1:LSC-REFL A RF9 Q ERR DQ H1:PEM-CS ACC BSC1 ITMY X DQ H1:SQZ-OMC TRANS RF3 I NORM DQ H1:LSC-REFL A RF45 I ERR DQ H1:PEM-EX EFM BSC9 ETMX X OUT DQ H1:SQZ-LO SERVO ERR OUT DQ

Questions we tried to answer

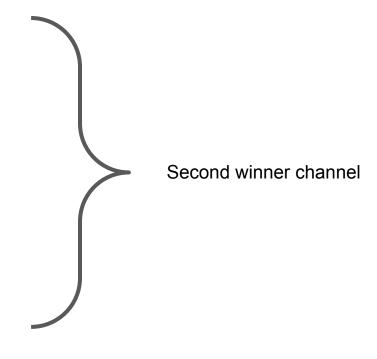
- Why did Hveto have more rounds and thus use more channels than UPV?
- In the case of multiple-channels runs, why were some triggers vetoed by UPV but not Hveto?
- In the case of multiple-channels runs, why were some triggers vetoed by Hveto but not UPV?


Results: Week-long runs (Multiple Channels)


Very roughly, Hveto behaves better in vetoing triggers than UPV does.

Analysis (1): Unique UPV Triggers

Shared triggers

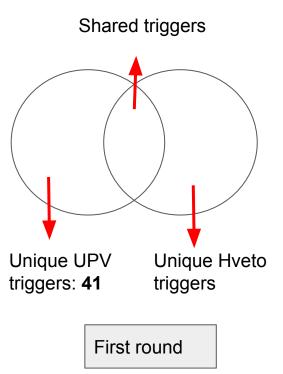

First round

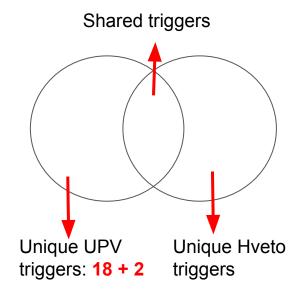
Hveto (multiple channels) did not catch these 23 triggers in its first round, but it successfully found them in its following rounds.

First round + Other rounds

Vetoed triggeres from the Strain channel (23 triggers) Peak Time SNR Frequency round [[1265097766.71289, 93.0793228149414, 6393.85498046875], 2] [[1265102022.221191, 269.2848205566406, 3064.9091796875], 2] [[1265102145.615234, 75.26299285888672, 2801.871337890625], 2] [[1265247339.480468, 39.78929901123047, 1303.6982421875], 2] [[1265278420.293457, 217.740966796875, 3787.065185546875], 2] [[1265350357.919433, 217.740966796875, 1485.3023681640625], 2] [[1265357467.779785, 217.740966796875, 304.8404846191406], 2] [[1265389488.51416, 217.740966796875, 1088.881591796875], 2] [[1265415439.081543, 269.2848205566406, 9360.162109375], 2] [[1265551412.543945, 115.11315155029297, 5195.751953125], 2] [[1265552104.948242, 115.11315155029297, 1021.59521484375], 2] [[1265656323.43164, 93.0793228149414, 707.48583984375], 2] [[1265688644.333984, 49.20825958251953, 4169.978515625], 2] [[1265693178.643554, 115.11315155029297, 5409.70458984375], 2] [[1265735778.885742, 142.36285400390625, 7600.84326171875], 2] [[1265211592.65625, 10.608750343322754, 219.6233367919922], 4] [[1265208083.80664, 49.20825958251953, 1072.17822265625], 6] [[1265425951.513672, 75.26299285888672, 1361.9827880859375], 6] [[1265556090.802734, 75.26299285888672, 5376.09228515625], 6] [[1265638754.504394, 217.740966796875, 161.82504272460938], 7] [[1265742400.998047, 93.0793228149414, 905.9186401367188], 8] [[1265545893.108398, 115.11315155029297, 1166.84912109375], 10] [[1265582544.693359, 93.0793228149414, 3466.598388671875], 10]

2 **H1:0MC-LSC_I_OUT_DQ** 0.10 7.75 121.23 52.00 4.64 0.00 22.08 0.01 [39/75] [39/840] [7.29/525168.10] [227/1028] [55.19/525216.00]

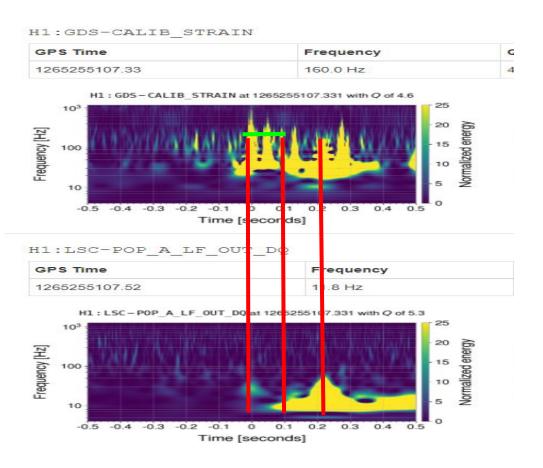

- Time window = 0.1s
- Specific look:
 - [[1265097766.71289, 93.0793228149414, 6393.85498046875], 2]


The veto segment used by the round 1 winner channel is

The veto segment used by the round 2 winner channel is

Insight: help explain why Hveto has much more rounds in than UPV does

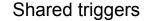
18 triggers uniquely found by UPV

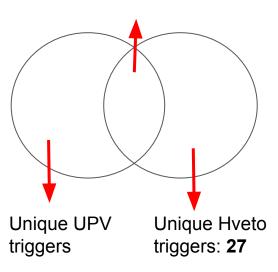


 The choice of the time window

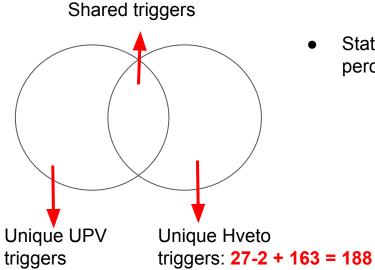
First round + Other rounds

Time Window Comparison

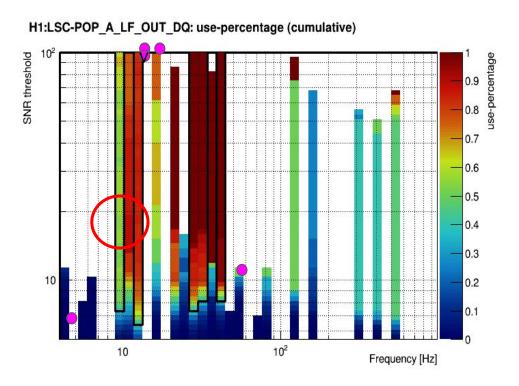


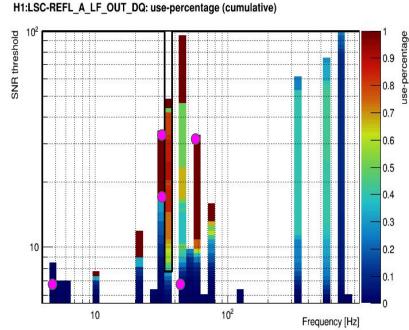

The strain channel scan is centered at a time 0.19s earlier than the time the auxiliary channel is centered at.

Questions we tried to answer


- Why did hVeto have more rounds and thus use more channels than UPV?
- In the case of multiple-channels runs, why were some triggers vetoed by UPV but not Hveto?
- In the case of multiple-channels runs, why were some triggers vetoed by Hveto but not UPV?

Analysis (2): Unique Hveto Triggers


First round



 Statistics related to used percentage

First round + Other rounds

Why UPV missed some triggers which were found by Hveto

Observations for running multiple channels

- In general, Hveto vetoes more triggers than UPV does, but Hveto has much a higher dead time than UPV does.
- Hveto has more round winners than UPV does because of its use of time windows.
- Hveto missed triggers vetoed by UPV because of time window issues.
- UPV missed triggers vetoed by Hveto because of statistical reasons (used percentage).

Future

DQ shifts

Thank you for listening! Questions?