
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T2100460-v3 Advanced LIGO 2/10/2022

A Biquad Implementation Using
Advanced Vector Extensions

Daniel Sigg

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note

of the LIGO Laboratory.

California Institute of Technology
LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW22-295

185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 159

Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754

Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

LIGO LIGO-T2100460-v3

 2

1 Introduction
Intel based CPU have implemented advanced vector extensions since a while. We look at AVX2
and AVX-5121, AVX2 has become common, whereas AVX-512F is newer and less widely
available. Our newest set of front-end computers based on Cascade Lake processors, like the
Intel® Xeon® W-2245 Processor, support both.
Advanced vector extensions allow to process multiple floating-point operations in parallel: 4 in
case of AVX2 and 8 in case of AVX-512F. These operations also use a separate CPU register file.
There are 16 registers for AVX2 and 32 for AVX-512.
A single IIR filter and its implementation as a cascaded set of biquad sections cannot easily be
parallelized. Instead, we investigate how to implement multiple IIR filters in parallel consisting of
a fixed set of 3 biquad sections. The main use case for this parallelization would be the decimation
filters that reduce the data rate from a fast ADC running 219 Hz.

2 Thermal Throttling
Vector extensions produce a lot of heat and potentially lead to thermal throttling of the CPU.
Figure 1 shows the potential impact on CPU clock for a CPU that is from the same family as the
W-2245 with the same core count and similar frequencies (3.9 vs 3.6 GHz). For reference see
en.wikichip.org2, and online articles3,4.
For our front-end computers we disable turbo mode in the BIOS, so they never run faster than their
normal base frequency of 3.9 GHz. From the table below, we can conclude that it is unlikely that
thermal throttling will be an issue for AVX2 and maybe effect performance if AVX-512 is run on
all cores. In our targeted use case, these operations would only run on the IOP and hence one core.
So, we don’t envision any issues due to thermal throttling.

Figure 1: Thermal Throttling on a Xeon Gold 6244 CPU 3.6GHz with 4.4GHz turbo.

1 https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
2 https://en.wikichip.org/wiki/intel/xeon_gold/6244
3 https://extensa.tech/blog/avx-throttling-part1/
4 https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/

https://en.wikichip.org/wiki/intel/xeon_gold/6244
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://en.wikichip.org/wiki/intel/xeon_gold/6244
https://extensa.tech/blog/avx-throttling-part1/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/

LIGO LIGO-T2100460-v3

 3

2.1 Implementation
We use the LIGO biquad implementation as a starting point. See the zip file in T2100460 for the
C/C++ code that was used. We first slightly rewrite it by using array indices instead of pointer
arithmetic. Next, we then implement both AVX2 and AVX-512 versions. The filter coefficients
don’t need to be identical, but the number of sections needs to be the same. Finally, we write
versions that use identical coefficients and exactly 3 sections, implement decimation and work on
longer strides of data. The later versions are targeted an ADC data that is arranged in vectors of
fixed length corresponding to the number of ADC channels and is stacked up 8 samples deep that
need to be filtered and decimated.
A second set of tests implements both a down conversion followed by an IIR filter. We look at
two cases: there are multiple inputs that are all down-converted by the same frequency and a single
input that is down-converted by multiple frequencies. These routines don’t stack up any samples
but work clock by clock.

Table 1: Tested Biquad Implementations.

iir_filter_biquad Copied from fm10Gen.c.

biquad_std Same as above but using array indices instead of
pointer arithmetic.

biquad2_sse3 SSE3 implementation (with FMA) of biquad,
working on 2 input samples in parallel.

biquad4_avx2 AVX2 implementation of biquad, working on 4 input
samples in parallel.

biquad8_avx2 AVX2 implementation of biquad, working on 8 input
samples in parallel, this function uses the same
parameters as biquadAVX512 and can be
interchanged.

biquad8_avx512 AVX512 implementation of biquad, working on 8
input samples in parallel

biquad_stride1_std Biquad implementation that works on a longer stride
of data and includes a decimation. All filter
coefficients are identical.

biquad_stride2_std Poor man’s way to parallelize the above
biquad_stride1 working on 2 samples intermixed.

biquad_stride4_std Working on 4 samples intermixed.

biquad_stride2_section3_sse3 SSE3 implementation (with FMA) of biquad_stride1,
working on 2 samples in parallel.

biquad_stride8_section3_sse3 SSE3 implementation (with FMA) of biquad_stride1,
working on 2 samples in parallel, but using poor
man’s way of parallelization, working on 4 vectors
intermixed.

https://dcc.ligo.org/LIGO-T2100460

LIGO LIGO-T2100460-v3

 4

biquad _stride4_section3_avx2 AVX implementation of biquad_stride1, working on
4 samples in parallel.

biquad _stride8_section3_avx2 Poor man’s way of parallelization, working on 2
vectors intermixed.

biquad_stride16_section3_avx2 Working on 4 vectors intermixed.

biquad_stride32_section3_avx2 Working on 8 vectors intermixed.

biquad _stride8_section3_avx512 AVX-512 implementation of biquad_stride1,
working on 8 samples in parallel.

biquad_stride16_section3_avx512 Poor man’s way of parallelization, working on 2
vectors intermixed.

biquad_stride32_section3_avx512 Working on 4 vectors intermixed.

demod_dec_stride8_section3_std Demodulate multiple channels by a single frequency
followed by a decimation filter.

demod_dec_stride8_section3_sse3 SSE3 implementation (with FMA) working on 4x2
samples in parallel.

demod_dec_stride8_section3_avx2 AVX2 implementation working on 2x4 samples in
parallel.

demod_dec_stride8_section3_avx512 AVX512 implementation working on 8 samples in
parallel.

demod_dec_rotation8_section3_std Demodulate a single channel by multiple frequencies
followed by a decimation filter.

demod_dec_rotation8_section3_sse3 SSE3 implementation (with FMA) working on 4x2
samples in parallel.

demod_dec_rotation8_section3_avx2 AVX2 implementation working on 2x4 samples in
parallel.

demod_dec_rotation8_section3_avx512 AVX512 implementation working on 8 samples in
parallel.

LIGO LIGO-T2100460-v3

 5

3 Results
We run two version on the Xeon W-2245: once compiled using the RGC compiler flags,
“-O -ffast-math -m80387 -msse2 -fno-builtin-sincos -march=native”, and once using a higher
optimization level, “-O5 -march=native”. The native architecture flag has been added to both,
otherwise AVX2 and AVX-512 wouldn’t be available. In our case native means cascadelake.

Table 2: Test Results Xeon W-2245

Function
RCG flags Performance

Time(s) Speedup Time(s) Speedup
iir_filter_biquad 11.6 1.0 12.1 1.0
biquad_std 11.9 1.0 13.7 0.8
biquad2_sse3 5.28 2.2 5.10 2.3
biquad4_avx2 2.78 4.2 2.78 4.2
biquad8_avx2 2.56 4.5 2.58 4.5
biquad8_avx512 1.76 6.6 1.77 6.6
biquad_stride1_std 11.6 1.0 10.2 1.1
biquad_stride2_std 11.0 1.1 8.8 1.3
biquad_stride4_std 9.7 1.2 8.2 7.7 1.4 1.5
biquad_stride2_section3_sse3 5.3 2.2 4.4 4.4 2.6 2.6
biquad_stride8_section3_sse3 3.58 3.2 2.83 3.4 4.1 3.4
biquad _stride4_section3_avx2 2.98 3.9 2.42 2.4 4.8 4.8
biquad _stride8_section3_avx2 2.45 4.7 1.99 2.1 5.8 5.5
biquad_stride16_section3_avx2 1.87 6.2 1.48 1.79 7.8 6.5
biquad_stride32_section3_avx2 1.77 6.6 1.65 2.81 7.0 4.1
biquad _stride8_section3_avx512 1.96 5.9 1.48 7.8
biquad_stride16_section3_avx512 1.37 8.5 1.06 10.9
biquad_stride32_section3_avx512 1.21 9.6 1.02 11.4
demod_dec_stride8_section3_std 25.6 1.0 19.8 1.3
demod_dec_stride8_section3_sse3 8.67 3.0 7.54 10.0 3.4 2.6
demod_dec_stride8_section3_avx2 5.11 5.0 4.31 5.53 5.9 4.6
demod_dec_stride8_section3_avx512 4.16 6.2 3.32 7.7
demod_dec_rotation8_section3_std 27.7 1.0 22.7 1.2
demod_dec_rotation8_section3_sse3 10.7 2.6 9.31 11.4 3.0 2.4
demod_dec_rotation8_section3_avx2 5.77 4.8 5.11 6.59 5.4 4.2
demod_dec_rotation8_section3_avx512 4.15 6.7 3.32 8.3

LIGO LIGO-T2100460-v3

 6

There is an important difference in the SSE3 and AVX2 implementations, if a processor with
AVX2 but without AVX-512 capability, such as haswell, is selected. For an AVX-512 capable
processor, the compiled code uses 32 internal xmm or ymm registers, whereas only 16 registers
are available in the case of haswell. This is because for AVX512 the register set was increased by
a factor of 2. Where it matters both times are given, haswell times were generally slower. The
biquad functions were repeated many times to get stable execution times.

4 Conclusions
SSE3, AVX2 and AVX-512 can provide a good speedup over the current implementation of the
internal decimation filters.
We would profit from being able to compile the front-end code with a higher optimization level.
SSE3, AVX2 and AVX-512 implementations are less dependent on the selected optimization
level.
At the high optimization level the speedup by SSE3 is between 2 and 4, whereas for AVX2 it is
between 3 and 5, and for AVX-512 it is between 5 and 8. At the RGC optimization level, the SSE3
speedup is between 2 and 3, whereas the AVX2 speedup is between 2.5 and 8, and the AVX-512
speedup is between 7 and 11. The real world speedup of in IOP is of course less, since it has to
perform other operations, but with both a fast and a low noise ADC running at 219 Hz the burden
of the decimation filters is significant.

	1
	1 Introduction
	2 Thermal Throttling
	2.1 Implementation

	3 Results
	4 Conclusions

