The Path Forward for Gravitational-wave Astrophysics

Damour Fest 13 October 2021

David Shoemaker MIT

- Plans and dreams for the future of detecting/exploiting
 - » FemtoHz: CMB B-mode primordial stochastic background
 - » NanoHz: signals via Pulsar test masses
 - » MilliHz: signals via inter-satellite timing
 - » HectoHz: signals via ground interferometry
- GWIC Roadmap in Nature for more detail

The big picture of gravitational wave astronomy

CMB B-mode

- The signal of gravitational waves from inflation is the holy grail of cosmology
- Measuring primordial CMB B-modes is likely our best opportunity for indirectly observing gravity operating on a quantum scale
- Current limit: tensor to scalar ratio r < 0.036
 (BICEP/Keck+WMAP/Planck, PRL 127, 151301)
- ...no detection to date foreground of galactic dust is challenging

 $r = (E/3.3*10^{16} \text{ GeV})^4$ where E is the scale of inflation

E, 10 ¹⁶ GeV	r
3.3	0.1
1	0.01
0.6	0.001

Hazumi&Lee; Page

The Future: CMB-S4

- CMB-S4 is the next-generation groundbased cosmic microwave background experiment.
- 21 telescopes at the South Pole and in the Chilean Atacama desert
- Multi-band detectors to be able to remove contamination from galactic foregrounds
- DOE + NSF joint construction project
- Commissioning in the late 2020s
- 7 years of operations through 2030s
- >10x improvement in sensitivity
- CMB-S4 sensitivity ensures that a nondetection of r would rule out the leading inflationary models, and motivate alternate models for the origin of the universe

CMB-S4 Science Requirement 1.0:

- If r > 0.003: measure at 5σ
- If r = 0: set $r \le 0.001$ at 2σ

A spectrum of GW Sources and Sensors (trimming off CMB B-modes)

Pulsar Timing Array GW Detectors

- Prime target: the stochastic background signal from the cosmological population of gravitationally bound supermassive black hole binaries
 - » May also be able to see some SMBHB inspirals as individual sources
- Technique: observe well-characterized msec pulsars, infer distortions of space-time from coherent shifts in timing
- Uses an array of ground-based Radio Antennas
- Requires search for, and deep understanding of, very stable pulsars

PTA: Projection going forward

 The most recent PTA results are from NANOGrav's analysis of <u>12.5 years</u> of <u>precision timing data from 47 pulsars</u>

Strong evidence for uncorrelated common red noise process.

(GW would show a spatial correlation)

Already constraining Galaxy Formation

Loss of Arecibo...gain of Tianyan, Chime

Foresee ~factor 10 improvement in ~10 years

A spectrum of GW Sources and Sensors

LISA

- Notion of a space-based interferometric detector dates from 1974
 - » Rai Weiss and Peter Bender; napkin
- Basically a timing measurement between test masses in space

- » $\Delta L = h \cdot L$; L can be ~10⁹ m, making ΔL ~10⁻¹¹ m workable (not LIGO's 10⁻¹⁹)
- Best sensitivity to milliHz sources
 targets 10³ − 10⁹ M_•
- Triangular configuration
- Sums and differences around the triangle
 - » Allows both polarizations of the gravitational waves to be measured
 - » Provides signals to remove laser frequency noise
- Earth-trailing orbit provides scan of the sky, provides sky localization

LISA Status

- <u>LISA</u>'s Projected science capabilities are breathtaking mapping of SMBH by IMBH test particles, understanding galaxy formation, unprecedented tests of GR via Thibault's waveforms...
- Key 'free-fall' technology beautifully demonstrated by LISA Pathfinder
 - » Telescope is the principal untested instrument element
 - » Systems challenges alignment, cross-couplings

Mostly just making it robust, redundant, and making 3 satellites, 6

transponders, in time for launch

 ESA 'L' mission, broad European member-state participation, NASA a junior partner

- Mission Formulation Review underway; on track for
 - » 2025 adoption
 - » Mid-2030's launch
- 4 year mission, 10-year consumables

A spectrum of GW Sources and Sensors

Ground-based instruments

- 3 Epochs relevant for this 'future' discussion:
 - » Building out the network of current 'Advanced Detectors'
 - » Full exploitation of the present observatories
 - » 3rd generation instruments in New Observatories
- I'll just use binaries to indicate sensitivities
 - » Obviously a wide range of GR, astrophysics, and cosmology can be explored

...Building out the network:

The advanced GW detector network

What can we do in a 4km infrastructure?

- LIGO, Virgo, and KAGRA will continue to interleave observing and improving sensitivity until the next generation of detectors is in place
 - » ...or beyond if there is a good scientific reason
- LIGO as example....Near term (to ~2028): well-defined program,
 leading to ~20x greater event rate, ~2.75x better SNR for given event
- Longer term, in 4km infrastructure: Just starting to think about what's possible, with improvements of another factor 2 in sensitivity, 8 in rate

	Range / Mpc	
	BNS	BBH
A+	340	2565
$A^{++}(A^{+})$	450	3095
A++ (AlGaAs)	670	4005
Voyager	720	4085

Ability to localize sources with 5 detectors

Further Future Improvements: Next Generation Observatories

- European Concept: <u>Einstein Telescope</u>
- Significant design study undertaken for both Facility and Instruments
- Underground construction proposed to reduce Newtonian Background
 - » (and be compatible with densely-populated Europe)
- Triangle LISA-like with 10km arms; one-site polarization measurement
- Multiple instruments in a 'Xylophone' configuration
 - » Allows technical challenges for low- and high-frequency to be separated
- Designed to accommodate a range of detector topologies and mechanical realizations
 - » Including squeezing and cryogenics
- News: placed on the ESFRI Roadmap; Significant step forward!

US Concept: Cosmic Explorer

- Make Advanced LIGO 10x longer,
 10x more sensitive
- Thermal noise, radiation pressure, seismic, Newtonian unchanged
- Signal grows with length $\Delta L = h \cdot L$
 - For wavelengths shorter than the arms;20km ideal for NS-NS tidal signal detection
- Two sites, 40km and 20km; on earth's surface (needs some earthmoving)
- 40km ideal for BH-BH horizon
- Concept offers sensitivity without new measurement challenges; could start at room temperature, modest laser power, etc
- Recently completed 'Cosmic Explorer Horizon Study'
- Eager to catch up with Einstein Telescope

Reach of ET and CE

Next Generation Observatories

- When could this new wave of ground instruments come into play?
- Appears 15 years from t=0 is a feasible baseline
 - » Initial LIGO: 1989 proposal, and at design sensitivity 2005
 - » Advanced LIGO: 1999 White Paper, GW150914 in 2015
- Modulo funding, could envision...
 - » Einstein Telescope in the early 2030's
 - » Cosmic Explorer in the mid-2030s
- Should hope and strive and plan to have great instruments ready to 'catch' the end phase of binaries seen in LISA (ref. Sesana)
- Crucial for all these endeavors: to grow the scientific community planning on exploiting these instruments far beyond the GR/GW enclave
 - » Costs are like TMT needs a comparable audience

Onward!

- Wonderful GW science opportunities within the reach of technology
- Let's hope and conspire to cause our funding agencies to support these initiatives
- ...and thanks to Thibault for contributing in so many ways!

Nanograv