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1 Abstract

The amplitude of the noise in laser interferometric data limits the astrophysical information
that can be extracted from it. LIGO has a strong history in reducing the linear and stationary
noise at different frequencies by monitoring auxiliary sensors and the correlation with the
estimated strain at a given time. Recently, it was shown that nonlinear correlations could be
used to reduce the noise even further for the case of the noise spectral density around 60 Hz in
laser interferometers.|[1] The approach involved utilizing two types of auxiliary channels, each
with different spectral content. In this project, a similar methodology will be investigated
for the lower part of the LIGO spectrum (below 10 HZ) which has not been explored in any
previous subtractions. The gravitational wave memory from Core Collapse Supernovae and
pre-merger binary star signals are known to have low-frequency emission between 10~° Hz
and 50 Hz, which is the main motivation for this project. 2]

2 Introduction

2.1 Astrophysics

Gravitational waves have become a widely used astronomical tool in modern astrophysics
in recent years. Predicted by Albert Einstein in 1916, the existence of gravitational waves
was not fully proven until 2016 by the LIGO (Laser Interferometer Gravitational-Wave Ob-
servatory) [3] scientific collaboration. LIGO utilizes laser interferometers to measure the
microscopic deformations in space-time caused by transient gravitational waves. Different
features of the same sources emit gravitational waves at different frequencies. Ground-based
laser interferometers have a sensitivity that depends on the specific sources of noise at a
certain frequency. The lower frequency regime between 10~ Hz and 50 Hz is particularly
challenging because of the noise (i.e. ground vibrations and control systems noise, which
are likely to be relevant sources at lower frequencies) that can interfere with the detector in-
struments. [4] These types of noise tend to “couple” or leak into the main signal and thereby
producing sources of noise disturbances which then limits the sensitivity of the detectors.
Noise coupling is defined as the physical process of adding some noise sources (such as the
ones mentioned previously) to the gravitational wave strain output.

Nonetheless, there are interesting sources of gravitational waves at those lower frequencies to
study. In particular, the gravitational wave memory from Core-Collapse Supernovae [5] and
pre-merger binary star signals are found in the lower gravitational wave frequency regime
between 107° Hz and 50 Hz.[2] For an event such as a galactic supernova, a fraction of the
gravitational wave memory might be above the amplitude of the noise floor at frequencies
below 50 Hz; therefore, reducing the noise floor as much as possible would make it easier to
extract those features.

Generally, contemporary aLIGO (advanced LIGO) [6] noise reduction methods can focus on
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reducing the impact of noise sources that are linearly coupled with auxiliary channels. [7]
Advancements in noise reduction techniques have allowed physicists to develop a method
in which algorithms can be trained to reduce non-stationary noise couplings by using aux-
iliary channels from LIGO’s detectors. Non-stationary noises tend to vary over a period
of time while noise that is stationary would remain constant. In particular, Vajente et
al.[1] demonstrated how to reduce the noise contributions to the strain channel (which con-
tains gravitational wave signals) by also reducing noise that are coupled non-linearly and
non-stationary using an algorithm he created called NonSENS (NON-Stationary Estimation
of Noise Subtraction) [8]. This algorithm was then used to successfully reduce the noise
produced by a 60 Hz power line and ASC (alignment sensing and controls) noise between
10-30 Hz. [§] As of right now, the only official aLIGO calibrated gravitational wave data
that is below 10 Hz is the CAL-DELTAL_EXTERNAL_DQ); however, it does not exhibit the
same precision as the other data that are available (calibrated above the frequency range).|9)
Therefore, it is of interest to examine further if subtraction would be viable below 10 Hz,
as it has not been done before. |1] The objective of this project is to utilize the NonSENS
algorithm to perform noise reductions below 10 Hz.

3 Objective

The main objective of this project will be to apply the algorithm “NonSENS” for subtracting
non-stationary noise to perform noise reductions between 1 and 10 Hz. This project will focus
on seeing if it is possible to do this for a lower frequency range then the one done previously
with the ASC subtraction [8] by figuring out which LIGO auxiliary channels can be utilize
that will be able to perform the subtraction to a gravitational wave strain channel.

4 Project Outline and Approach

4.1 Linearity and Stationarity

A system in signal processing is a process in which an output signal is produced as a result
of the response to an input signal. The simplest example of a system is as follows:

x(t) — system — y(t) (1)

where x(t) is the input signal that goes through a system and the y(t) is the resulting output
signal that is produced. Systems can be categorized as being linear or non-linear. A system
is considered linear if it obeys the Principle of Superposition. In particular, this principle
holds two mathematical properties: additivity and homogeneity (illustrated in FIG [1] and
, respectively). If the system does not follow either one of these properties, then it is
considered to be nonlinear.
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IF:
b 11 — System > yl[t]
X2 System > y2[t]
THEN:
x1[t] + x2[1] ———» System F——» v1[t] + y2[t]

Figure 1: This diagram is illustrating the additivity property of the superposition principle.
In other words, if input x1[t] produces output y1[t] and input 22[t] produces output y2[t]
(both going through the same system), then x1[t] + x2[t] will produce y1[t] + y2]t].

IF:

x[]—» System > yli]

THEN:

kx[t]— System F——> &k y[t]

Figure 2: This diagram is illustrating the homogeneity property of the superposition princi-
ple. In other words, if k is some constant, than the input kz[t] will produce output ky[t].

It is important to also understand the distinction between the characterization of stationary
and non-stationary processes as well. The frequency and statistical contents (i.e. mean,
standard deviation, auto- correlation, or power spectral density) in stationary processes do
not change over a period of time. In other words, the time series generated can change over
time, but the properties should remain static. Non-stationary processes, on the other hand,
does vary over a period of time.

4.2 Linear and Time Invariant System

If the behavior of the system’s inputs and outputs does not change due to time, then the
system is considered to be time-invariant. A linear time invariant (LTI) system is valid if
the previous statement holds true as well as the requirements for a linear system. The LTI
model also introduces another property called the shift invariance, which is illustrated in Fig.
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[Bl This property confirms that the behavior of the time-invariant system does not change
when time is shifted.

IF:

b4 11— System > v[i]

THEN:

X[t +s]———¥ System F——— v[t+5]

Figure 3: This diagram is illustrating the shift invariance property of a system. If the input
x[t] is shift by some constant s, then the output y[t] should also be shift by s. The shift
invariance property only holds true if the system is an LTT system.

LTT systems can be described by their impulse response. Below shows another system
diagram which is specified to be an LTI system:

d(t) — LT Isystem — h(t) (2)

where Dirac Delta function 6(t) is the impulse and h(t) is the overall output response to the
impulse, which are shifted and scaled. In a physical system, the impulse can be some added
physical object that changes the position of the system (i.e., a box sliding across the floor
after being hit once by a hammer — the hammer is the impulse in this case).

Recalling the shift invariance property, the input §(¢) becomes §(t — a) while the output is
also shifted by h(t — a), where a is some constant number. The assumption being made here
is that the system is causal. A system whose present response depends on present and past
values of the inputs is called a causal system, while a non-causal system depends on future
inputs.

Now, using all three properties (additivity, homogeneity, and shift invariance), some output
signal y(t) in an LTI system can be represented in its superposition form as follows:

where the scaling constants are (ki, k2, ...., k;). The same equation above can be written as:
N

y(t) = Z ki (t —t;) (4)
i=0
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which in turn can be written in an integral form:

y(t) = / T k(n)(t - ) (5)

where 0(t — 7) is the input shown by the shift invariance property and k(¢) is the impulse
response. This means that the general form of the output y(¢) will look like:

y(t) = / " k(r)a(t — r)dr (©)

Eqnf0] is known as the convolution integral. The mathematical operation of convolution is
basically combining two different signals (the input and the impulse response) to output a
third signal (the output). Convolution depicted in this form: (k * x)(t).

4.3 Transfer Function

The Laplace Transform is the transformation of a function from the time domain into the
s-domain. It is defined mathematically by:

F(s) = LI ()] = / T Ft)edt )

Therefore, eqn. [] can be transformed into the Laplace domain as shown:

Y(s) = K(s)H(s) (8)

This also expresses the Convolution Theorem, which says that if two functions that are
being convoluted are Laplace transformed into the s-domain, then the convolution operation
simply becomes multiplication.

The transfer function of the system can be obtained in the following form by assuming that
it can be written in terms of rational functions:

K(s) = Y(s) o+ bis+bys® + ...+ bys” ()
COH(s)  ag+ais+axs® 4 ...+ aysM

The roots of the polynomial in the numerator of the transfer function are zeroes, while the
roots of the polynomials in the denominator of the transfer function are called poles.
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4.4 Non-Stationary Noise Model

Below is the equation that describes the total strain h(t) with both the linearly and non-
linearly correlated parts of the noise that goes into the detector:

h(t) :hgw(t)+€L+€NL+EF (10)

where €y, is the linear noise coupling, €y, is the non-linear noise coupling, € is the funda-
mental noise that is neither linearly nor non-linearly coupled, and hgw (t) is the actual GW
signal. [10].

The linear coupling €, (t) can be similarly described in the convolution integral form shown
in eqn. [0] as:

er(t) = H[s(t)] = /OOO h(t)s(t — T)dr (11)

while the non-linear case is shown as the non-stationary coupling ey, (¢) described by the
algorithm is:

enp(t) = Zai[a:i(t)s(t)] - Z / oy (T)ng(t — 7)dr (12)

where the H is the linear coupling, the «; is the non-linear coupling, the z;(¢) is the slow
modulation witness channel, s(¢) are the fast modulation witness channel, and n; is the
modulated signal of the combined fast noise witness signals and the modulation witness
signals. These signals are then coupled into the non-stationary transfer function «a;. This
is not the most general form of a non-linear case — however, for this algorithm’s purpose,
the Equll2]is describing how each of the modulated signals z;(t)s(t) are coupling with the
non-stationary transfer function «;.

As shown in Eq[I0] the non-stationary correlated part requires two different sets of auxiliary
channels for filtering. These two auxiliary channels are the fast noise witness channels and
the slow modulation witness channels, each containing different spectral content at different
frequency bands. The fast noise witnesses [8] are the channels that “witness” the faster noise,
while the slow modulation witnesses [8] are the channels that “witness” the modulation of the
noise couplings. For this project, the fast noise contain content in the 1 to 10 Hz frequency
band while the slow noise contain content below 1 Hz.

As shown in Eq[10] the assumption can be made that some of the noise that is witnessed by
an auxiliary channel is coupled to the strain through a linear and stationary coupling, H.
In this case, the step is to find a fast noise witness channel that have power in the frequency
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band of interest (i.e., the frequency range desired for the noise subtraction) by calculating
the linear coherence between different witness channels and the target channel. If there is
coherence between the channels in the frequency range of interest, then linear and stationary
subtraction can be implemented. However, in a realistic scenario, most of the noise coupling
is changing over time, (i.e., non-stationary coupling «;). This is where it becomes easier
to make the distinction between the fast witness and the modulation witness signals. In
particular, “modulation witness” signals that have time variations that follow the changing
coupling parameters. This is shown in Eq[I0], where the modulation witnesses are multiplied
by the fast noise signals, thus producing a time-varying gain of the filters. Therefore, if a
modulation signal follows the way the non-stationary coupling on the signal changes over
time, then it is possible to predict the model for subtraction.

As a starting point, the SUS (suspension), ISI (internal seismic isolation in vacuum chamber),
ASC, and SEI (seismic) auxiliary channels are good possible candidates for the fast noise
witness since they are channels relating to seismic motion and control systems, which can
contain useful signals for the lower frequency regime. ASC error signals was suggested to use
for the slow modulation witness. Originally, some of the ASC signals have also been used
as fast noise witnesses to successfully subtract noise between 10 and 30 Hz as shown in Fig.
[.4] which makes it a decent starting point. [3]

10-19

f = Original
\ Noise-subtracted
\1 M N "
Hq~

I !
WML

10-23

10-20

Strain [Hz"12]

10.0 12,5 15.0 17.5 20.0 225 25.0 27.5 30.0
Frequency [Hz]

Figure 4: Graph of the ASC subtraction done between 10 to 30 Hz. Taken from loghook:
https://alog.ligo-wa.caltech.edu/alLOG /index.php?callRep=57423

The target strain channel h(t) is the channel that the linear and non-linear noise couplings
would be subtracted from. For this project, the CAL-DELTAL_EXTERNAL_DQ channel
is the best candidate for the “target” channel. This channel is derived from control signals
that are then modified to produce the calibrated strain signal that is correct below 10 Hz,
which is the frequency of interest here. The downside to using this calibrated signal is that
is less accurate as oppose to the GDS-CALIB_STRAIN channel, which is the main product
of the calibration pipeline and is generally used for all data analysis. However, the GDS-
CALIB_STRAIN channel is only useful for subtraction above 10 Hz since the strain is not
corrected below that range. At this time, the CAL-DELTAL_EXTERNAL_DQ channel is
the only calibrated strain that is available below 10 Hz.
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4.5 Second Order Stages

The non-linear coupling is given by eqn. [I2] This reflects eqn. [6] and therefore it can be
inferred that «; is the kernel. The relationship between the kernel and the transfer function
was shown in eqn. [0} Transforming a; back into the s-domain as a(s), the transfer function
can be expanded into:

bo + bis + bas? + ... + bys” Z;‘Vzobjsj
ag(s) = 5 T =T , (13)
ap + a18 + azs® + ... +ays ijo a;s’

where (M > N) since this is a casual system. Here, the j roots of b are the zeroes of «;(s)
and the j roots of a are the poles of a;(s). Therefore we can write this as:

(g) = b_J(S —21)(8 — 22)....(s — 2m)
) aj (s —p1)(s — p2)....(s — pw) (14)

where z1, 29, ...., 25y are the zeroes (roots of b), py, pa, ...., py are the poles (roots of a), and
% represents the scalar gain. Then, by decomposing it:
J

r r r
a(s)=c+ —— 4 2 4 4+~
S—pP1 S—DP2 § —PN
Mo
0ils) = ¢ + ) (15)

where r; is the complex residual and p; is the complex pole. In order to make the time-
domain response of the transfer function real, there are two possible conditions: a) r; and
p; must have conjugate pairs and b) r; and p; be real. Therefore, those two conditions are
shown in the equation below:

a(s):c—l—Zpri-F i ]+Z b (16)

*
p S D S ST D

where the second term denotes the complex term and the third term is the real term. The
following set of equations is simply showing how the complex term gets expanded out:

Comn(s) = 3 | D)

i
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acomplex(s) _ Z {T‘i(s - p;k) + T;(S - pz’) (17)

(s — 2[pss] + pF)

i
and then for the real term, pair up the real poles:

r r Tj
areal<3) = : + 2 + ...+ .
S—=pP1 ST P2 S—Pj

r1(s — p2) +1r2(s — p1)
(s —p1)(s —p2)

Alreql (5) -

(11 4+ 72)s + T1p2 — T2p1

18
s2 — s(pa — p1) + p1p2 (18)

Qreql (S) =

Eqns |17 and [18 both contain a second order polynomial in their denominator, which is called
the second order stage.

4.6 NonSENS Code

The NonSENS (NON-Stationary Estimation of Noise Subtraction) algorithm is written in
Python scripts. The main “nonsens” interface consists of several scripts which contain the
codes to perform each step of the subtraction. Fig[6land[7]show the display of the algorithm’s
output on an integrated terminal. The iPython command shell is utilized as the interpreter
on this terminal prompt since the algorithm is written in Python.

The purpose of utilizing the NonSENS algorithm is to find the optimal parameters that
will reduce the maximum amount of noise from the target strain as possible. In order to
implement a linear and stationary subtraction using the algorithm, only the noise witnesses
should be considered (meaning that the list of modulation witnesses should remain empty).
However, the non-stationary noise couplings ought to be considered if one wishes to perform
the most optimal noise subtraction, which is what the algorithm takes into account. As shown
in eqnfL0} the z;(¢) (slow modulation noise) and s(¢) (fast noise) are multiplied together.
Each of the modulated signal is then coupled with the non-stationary «; transfer function,
which results in having all of those transfer functions summed together.
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x (1) 51(t) x1(6)
x2(t) i s2(t) _ ;C: Eg
x3(t) s3(t) | x4(t)
siioll I Do T PROPNS
W.Noise SS(t) xi(i) . S;(;) Total
e Neen | 21003583 | Modulated
signals signa Is

x2(t) - 51(t)
x2(t) * s2(t)

x4(t) = s5()

Figure 5: This diagram is an illustration example of how the witness signals are combined
in the algorithm in order to form the modulated signals. Essentially, the algorithm takes
each noise witness x;(¢) and multiplies it with each modulation witness s;(¢). The total
modulated signals in the end are equal to i + (j X ¢), where ¢ and j are simply the indices of
the witness signals. Each of the modulated signals will then go through a transfer function
a; before being summed together.

The algorithm then implements a filter: the time-domain IIR (infinite impulse response)
filter, which as the name implies has an impulse response that is infinite. This is used as
opposed to the FIR (finite impulse response). The advantage of utilizing the IIR filter is
having a faster processing time and having to use fewer parameters than with the FIR when
having to compute a similar filtering operation. The IIR filter also has a recursion feedback
aspect which the FIR filter does not have. The FIR filter output can be described in the
following equation:

yln] = byl — k] (19)

where the y[n] is the output of the filter, x[n — k| is the past input delay, and by is is the
filter coefficient. The IIR filter output is shown as:

ylnl = brxln =k =) " aryln — k] (20)

where the first term in the equation which represents the sum of past inputs like in Eqn[T9|
and the second term is the sum of the past outputs with a different filter coefficient ay.

However, the downside of the IIR filter is the higher complexity of the design when it comes
to trying to solve optimization problems. This is due to having the unknown filter coefficient
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ar as shown in Eqn20] The overarching problem now is that algorithm might not reach
an optimal solution every single time. (See Section regarding the correlation between
optimal value and cost function.)

Finally, the sum of all of the filtered signals are then to be subtracted from the original
target signal; hence the subtraction is performed!

13| %run -i modified sub asc.py
Reading target channel (GPS 1242441188 - 1242442388) H1:CAL-DELTAL EXTERNAL DQ
using gwpy
Reading noise witness channels (GPS 1242441186 - 1242442388)
H1:ASC-DSOFT_P_OUT DQ
H1:ASC-DSOFT_P_SM DQ
H1:ASC-DSOFT_P_TN1_DQ
H1: ASC-DHARD:
T_DQ
H1:ASC-DHARD _P_TN1_DQ
H1:ASC-X_TR_B_PIT_OUT_DQ
H1:ASC-X_TR_B_YAW OUT_DQ
H1:ASC-X_TR_A PIT_OUT_DQ
H1:ASC-X_TR_A YAW OUT_DQ
H1:SUS-SRM_M3_MASTER_OUT_LL_DQ
H1:SUS-SRM_M3_MASTER_OUT_UL_DQ
H1:SUS-SRM_M3_MASTER_OUT_UR_DQ
using gwpy
Reading modulation witness channels (GPS 1242441180 - 1242442388)

using gwpy
Preprocessing. ..
Normalizing signals to zero mean and unity std
Resampling all witness signals to 512 Hz
Build modulated signals
Applying preconditioning filter
Computing cross spectral density matrices...
Detecting glitchy segments
119 good sepments / @ bad sepments
Computing FFTs
Averaging FFTs to get CSDs
Training model...
step = @ cost = 1.833274762628
step = 100 cost = 1.985557548165
step = 200 cost = 1.137036420796
step = 300 cost = @.944441884869
step = 400 cost = 8.965317402949

Figure 6: This shows the first half of the algorithm’s output on the iPython interpreter. At
the very top of the picture is the “%run -i” which is the command to run a python script.

step = 9408 cost = ©.865637329619
step = 9568 cost = @.788132887@89
step = 9608 cost = @.786126953243
step = 970 cost = ©.7849721@9532
step = 980 cost = ©.784248923142
step = 998@ cost = @.783878695499
Preprocessing. ..
Normalizing signals to zero mean and unity std
Using pre-computed normalizations
Resampling all witness signals to 512 Hz
Build modulated signals
Applying preconditioning filter
Time domain subtraction (method = serial)
applying upsampling filter...
applying antialias bandstop filter...
Saving to file /home/yuka.lin/test codes/nonsens-master/examples/Linear/NonS
ENS_test/plots//asc_modell_subtracted_timedomain_H_1242441180 1200 2021 @7_24 17
h36m53s _png

Figure 7: This is the second half of the algorithm’s output, continuation from Fig. [6]

In order to perform a subtraction utilizing the algorithm, a Python script that is run on the
terminal which contains all of the user’s inputted parameters for the particular subtraction.
The following parameters are utilized and adjusted as necessary:
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Target channel: is the main strain channel. It is up to the user to input the specified
channel’s information regarding GPS time, interferometer site, and how the channel would
be read into the code.

Noise Witness Channels: are the fast noise witness channels that will be used to subtract
with the strain.

Modulation Witness Channels: are the slow noise witness channels that will be used to
subtract with the strain. This list should be kept empty in order to perform only a linear
subtraction. This was shown in the second term of Eqn. [10} where H([s(¢)] is the stationary
noise coupled with the fast noise witness channel. (However, as a note, the equation model
only considers one fast noise witness channel while the algorithm can compute multiple
channels at a time.)

LIGO auxiliary channels are utilized as the channel parameters. These channels monitor the
physical behavior of LIGO detectors and are collected as data in the form of a time series. 4]

Preconditioning Filter: applies the preconditioning filter to the modulated signals. For the
ASC subtraction, the analog band-pass butter-worth filter was used, which is a variation of
the IIR filter. The term “band-pass” is a type of filter that sets a frequency specific range
for the filter to pass; anything outside of that range won’t be able to pass.

fs: is the sampling frequency, which is the amount of samples in each second (1/time).

n FFT: is the segment size of the FFT’s (Fast Fourier Transform). The FFT essentially
computes the DFT (Discrete Fourier Transform) in a more efficient way using an algorithm.

Glitches: are short-duration noise transient signals that can appear as an instrumental
artifact in the detectors. [4] The frequency band range and the threshold parameters can be
adjusted to detect possible the glitches. If glitches are found in any segments, those will be
discarded from the final calculation.

fband: frequency range wanted to minimize the residual noise within that band range.

nSOS: the number of second order stages specified by user. This was explained in the
previous section.

The following parameters are specified for the Adam (Adaptive Moment Estimation) al-
gorithm [11] in order to minimize the cost function (see Fig: learning_rate, decay_steps,

decay_rate, and nsteps.

The algorithm outputs the plots shown in the following sections.
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4.6.1 Cost Function Plot

A cost function is used to estimate how poorly the model will perform based on the relation-
ship between the independant and dependant variables of a model (i.e. the smaller the cost
function is, the better the estimate and vice-versa). Using this logic, it can be concluded for
this algorithm the following conditions: 1) if the minimum of the cost function is equal to
1, no noise subtraction is happening, 2) if the minimum of the cost function is greater than
1, noise is being added to the target, 3) if the minimum of the cost function is less than 1,
noise is subtracted from the target. In this case, the cost function is the calculated average
of the ratio of the subtracted power spectral densities divided by the original power spectral
density in that frequency range.

The cost function calculated in the algorithm is defined as the following equation:

A Slr,r)(w) N
0= s 21)

L

where the [wy, wy| are the selected frequency band range of interest in Hz, S[r,r| is the PSD
of the subtracted target signal, and S|h, h] is the PSD of the original target signal.

Best: 0.974924
1.000

0.995

0.990

0.985

Cost

0.980

0975

0970

2000 4000 6000 8000
lterations

Figure 8: The minimum of the cost function is indicated by the red line. The exact value of
this minimum is indicated by the plot title “Best: 0.974924” for this particular model. The
optimal value that this algorithm outputs is the minimum value that is calculated by the
cost function.

The residual r(t) is the leftover after the subtraction. Ultimately, the goal of the nonlinear
subtraction is to minimize the residual and minimize the cost function value — the more
optimized the subtraction, the lower cost function and the smaller the residual value should
be. This model also helps to solidify that the algorithm’s nonlinear subtraction will never
perform worse than the linear subtraction.

The first assumption begins with only the linear case:

r(t) = h(t) —ec(t) (22)
page 13
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where €7 (t) is the optimal linear subtraction that is performed. Therefore, the value of the
cost C'(fr) should be optimal. Now, the next case shows the non-linear subtraction being
implemented.

r(t) = h(t) —ep(t) — enp(t) (23)

Now there are two scenarios that can be made: the first one is that the cost C(fy1) is equal
to the C(01) because there was no non-linear contribution to the subtraction; therefore, the
only subtraction that was done in the entire model was the optimized linear part. The second
scenario is that C'(0yz) < C(fL) since the modulated coupling had some contribution, which
is then subtracted with the linear stationary coupling.

4.6.2 Subtraction Plot

The amplitude spectral density (ASD) is calculated as the square root of the power spectral
density (PSD). The PSD shows an estimation of how the power is distributed as a function
of frequency. This estimation is calculated using Welch’s method. [12] Welch’s method
essentially breaks a signal into segments called “time windows” in order to take the FFT of
each piece and then averaging them all together to create the PSD. This tends to help with
calculations of stationary-like signals and make the PSD’s smoother as oppose to simply just
taking a single FF'T of a full signal.

1019 4 = Original signal
Non-stationary subtraction

10 100

Figure 9: This plot depicts the ASD of the original target signal (which in this case is
the “DCS-CALIB_STRAIN_CLEAN _SUB60HZ_C01” strain) and the subtracted version of
that same target signal in order to show the amount of modification that was done in this
subtraction. The ratio plot at the bottom is graphed as the original target signal divided by
the subtracted target signal — therefore, if the ratio is shown to be above one as is depicted
in this example, then it is further indication that a subtraction is being performed as opposed
to an addition of noise. In the example plot above, it is shown that the noise was reduced
by a factor of a little over 2.5 between the 15-18 Hz frequency range.
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4.6.3 Contribution Plot
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Figure 10: This plot shows the amplitude spectral density (ASD) of the original target
channel and the noise witness channels. This helps to compare whether or not the target
and the witness channels have similar power content at the frequency ranges of interest.

4.6.4 Alpha Plot

[1] H1:SUS-ETMX_L2_DRIVEALIGN_P_OUT_DQ [2] H1:SUS-ETMX_L2_DRIVEALIGN_Y_OUT_DQ [3] H1:SUS-ETMY_L2_DRIVEALIGN_P_OUT_DQ [4] H1:SUS-ETMY_L2_DRIVEALIGN_Y_OUT_DQ

Phase

[5] H1:SUS-ITMX_L2_DRIVEALIGN_P_OUT_DG [6] H1:SUS-ITMX_L2_DRIVEALIGN_Y_OUT_DG [7]H1:SUS-ITMY_L2_DRIVEALIGN_P_GUT_DQ 8] H1:SUS-ITMY_L2_DRIVEALIGN_Y_CUT_DQ

Phase

Hos.

Frequency [Hz] Frequency [Hz] Frequency [Hz] Frequency [Hz]

Figure 11: The plots shown are the transfer functions for each of the modulated signals.
The orange lines are the phase values and the blue lines are the magnitude values of the
transfer functions. In this case, there are eight plots since only eight noise witnesses and no
modulation witnesses were used for this run. See Fig. |5 for how the modulated signals are
combined from the noise and modulation witness signals.
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4.6.5 Time-Domain Plot

ASD[Hz1?]

10 100

Figure 12: This is the same plot as Fig. [0 but showing the subtraction with the time-domain
PSD signals. The results from algorithm was converted from the computed frequency domain
transfer function into the time-domain IIR filter. The resulting time-domain PSD is what
is plotted in the figure.

4.6.6 Spectrogram Plots

|||||

Frequency [Hz]
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Frequency [Hz]

‘‘‘‘‘

Figure 13: A spectrogram shows an estimate of the PSD on shorter intervals on a frequency
vs time scale in order to see how the PSD changes with time.
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Frequency [Hz]

Figure 14: The same spectrogram as Fig[I3] but whitened. Whitening is normalizing the
data at each frequency to make it appear more uniform in order to be able to check for any
excess power at certain points in the frequency ranges. As shown in this figure, the power
seems evenly distributed.

A more in-depth summary of the algorithm code can be found at this website: https:
//wiki.ligo.org/CSWG/Algorithm.

The algorithm Python code can be found here: https://git.ligo.org/gabriele-vajente/
nonsens/-/tree/master!.[§]

4.7 Approach

The first step in the project would be to subtract as much noise from the "target” strain that
is linearly correlated with the fast noise witness auxiliary channels. Since there are a number
of active LIGO channels to choose from, the practical strategy would be to calculate whether
any linear coherence exists in the lower frequency regime between the channels in order to
establish if linear subtraction would be viable. If no coherence exists between channels, than
there is no linear subtraction that can be performed.

The next step then would be to remove the part of the noise that is non-linearly correlated.
However, finding the linear coherence between the channels is not a set determination of
whether or not a non-linear subtraction would be possible. At this time, though, it would
serve as a starting point to select certain set of channels that might have the possibility of
subtracting the non-linear noise from.

For more information and details regarding this project, please see this link which documents
more information about it: https://wiki.ligo.org/CSWG/NonLinearNoiseSub_LF.

Specific daily logs are kept at this link: https://wiki.ligo.org/CSWG/WeeklySummaries.
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5 Progress

5.1 NonSENS Algorithm

The initial weeks prior to the project was dedicated to understanding how to utilize the
NonSENS algorithm code. The existing example code for the subtraction of the ASC arms
was used as the starting template for this project.[8] This is a good starting point because
some of the ASC signals were previously used as a fast witness to subtract noise between 10
and 30 Hz, which is the lowest range that the subtraction algorithm had performed up to
date.

5.2 Spectrograms

Another important focus in the first week was also producing the spectrogram of the H1:CAL-
DELTAL_EXTERNAL_DQ strain. The purpose of making the spectrograms was to visually
observe if there were stationary or non-stationary behavior in each of the spectrum bands
that are contained within the strain. If there are some prominent stationary behavior found,
then next approach would be to find channels that are linearly coherent at the general
frequency range of this spectrum. Linear coherence describes the correlation between the
two stationary signals in the frequency domain. This was the first step in being able to narrow
down specific auxiliary channels to utilize that will be able to perform a noise subtraction
for this lower frequency range.

N 10-12

T \/

a 13 .-

@D 101 5

n- /]‘\
- \,
- .

10

Freq (Hz)

Figure 15: This plot shows the power spectral density (PSD) versus the frequency of the
H1:CAL-DELTAL_EXTERNAL_DQ strain signal. As shown in this plot, the PSD peaks
occur at the close to the same frequencies as each of peaks in FIG. [16| below.
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Frequency [Hz]

i
2 4 6 8 10 12 14 16 18 20
Time [minutes] from 2019-05-21 02:32:00 UTC (1242441138.0)

Figure 16: In observing the spectrogram of the H1:CAL-DELTAL_EXTERNAL_DQ strain
produced, there appears to be prominent peaks near in the ~ 2.1 — 2.4 Hz, ~ 3.5 — 3.8 Hz,
and ~ 9.5 — 9.9 Hz frequency ranges. The following figures display the same spectrograms
that are zoomed in on these particular frequency ranges as shown in the graphs below these
graphs which can be done by adjusting the FFT lengths (increase gets better frequency
resolution) and the stride (increase gets better time resolution).

5.2.1 Spectrogram 2.1 - 2.4 Hz

1059

1052

Frequency [Hz]

107®

2 4 6 8 10 12 14 16 18 2
Time [minutes] from 2019-05-21 02:32:00 UTC (1242441138 0)

Figure 17: This part of the spectrogram shows that there is a peak between 2.1-2.4 Hz.
This particular peak is displaying a lot of non-stationary behavior, though there is some
stationary as well.
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5.2.2 Spectrogram 3.5 - 3.8 Hz

Frequency [Hz]

2 4 6 8 10 12 14 16 18 2
Time [minutes] from 2019-05-21 02:32:00 UTC (1242441138.0)

Figure 18: The most prominent spectral feature appears on this plot between 3.5-3.8 Hz.
There appears to be a mostly stationary behavior on this spectrum peak.

5.2.3 Spectrogram 9.5 - 9.9 Hz

Frequency [Hz]

2 £l 6 L} 10 12 14 16

Time [minutes] from 2019-05-21 02:32:00 UTC (1242441138.0)

18 2

Figure 19: This peak appears in the 9.5 - 9.9 range on the spectrogram. The non-stationary
behavior is more apparent than the other peaks.

5.3 Coherence

Linear coherence describes the correlation between the two signals in the frequency domain.
The coherence between two signals is calculated from a scale from 0 to 1. The closer the
coherence value is to 1, the higher the coherence between the two signals.

If a target signal and noise witness signals have any linear coherence with each other, the lin-

ear subtraction on the target channel should eliminate the coherence between the subtracted
target and the noise channels.
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Frequencies: (Hz) 2.06 | 2.09 | 2.12 | 2.16 | 2.19 | 2.22 | 2.25 | 2.28 | 2.31 | 2.34 | 2.38 | 2.41
PEM-EX_ADC_0.19.O0UT_DQ 0.65 | 049 | 0.44 | 0.43 | 0.51 | 0.40 - 0.22 - 0.32 | 0.32
ASC-X_TR_.A_YAW_OUT_DQ 0.31 | 0.30 | 0.33 | 0.25 - 0.22 ] 0.24 | 0.23 | 0.28 - -
ASC-Y_TR.B.NSUM_OUT_DQ 0.21 | 0.30 - - 0.27 1 0.25 | 0.28 | 0.29 | 0.25 - -

ASC-DSOFT_P_OUT_DQ - - - 0.26 | 0.30 | 0.26 | 0.24 | 0.20 | 0.27 | 0.24 -

ASC-DSOFT_P_SM_DQ - - - 0.26 | 0.30 | 0.26 | 0.24 | 0.20 | 0.27 | 0.24 - -

ASC-DHARD_P_OUT_DQ - - 0.28 | 0.33 | 0.36 | 0.25 - - - 0.25 | 0.42 | 0.50

ASC-DHARD_P_SM_DQ - - 0.28 | 0.33 | 0.36 | 0.25 - - -
SUS-ETMX_RO_-DAMP_Y_IN1.DQ | 0.30 | 0.31 | 0.31 | 0.25 | 0.24 | 0.31 | 0.25 | 0.19 | 0.27 -
SUS-ITMX_M0_-DAMP_Y_IN1_.DQ - 0.23 | 0.26 | 0.25 - 0.33 ] 0.32 | 0.26 | 0.40 | 0.30 -
SUS-ETMX_M0_DAMP_Y_IN1_.DQ | 0.28 | 0.26 - - 0.22 | 0.30 | 0.28 | 0.27 | 0.37 | 0.24 -

0.25 | 0.42 | 0.50

Table 1: Top channels with the best coherence with H1:CAL-DELTAL_ EXTERNAL_DQ
at 2.0-2.4 Hz. Each of the coherence was calculated for each of the channels at different
frequencies.

Frequencies: (Hz) 3.50 | 3.53 | 3.56 | 3.59 | 3.62 | 3.66 | 3.69 | 3.72 | 3.75 | 3.78 | 3.81
LSC-SRCL_IN1_.DQ 0.65 | 0.65 | 0.57 | 0.61 | 0.59 | 0.50 | 0.35 | 0.27 | 0.40 | 0.33 | 0.32
SUS-SRM_M1_NOISEMON_RT_OUT_DQ | 0.65 | 0.66 | 0.58 | 0.61 | 0.58 | 0.50 | 0.34 - 0.40 | 0.32 | 0.31

SUS-SRM_M1_NOISEMON_LF_OUT_DQ - 0.66 | 0.59 | 0.61 - 050 | 0- | 0.27 | 0.40 | 0.33 | 0.30
SUS-SRM_M3_MASTER_OUT_LL_DQ 0.66 | 0.68 | 0.61 | 0.63 | 0.60 | 0.49 | 0.34 | 0.27 - - -
SUS-SRM_M3_NOISEMON_LL_OUT_DQ | 0.66 | 0.68 | 0.61 | 0.63 | 0.60 | 0.49 - 0.27 - - -

Table 2: Top channels with the best coherence with H1:CAL-DELTAL_EXTERNAL_DQ at
3.5-3.8 Hz.

5.4 Picking Channels

In order to aid even further in narrowing down a list of possible auxiliary channels to use
as a fast noise witness, an algorithm called Bruco (Brute Force Coherence) [13] was uti-
lized to create a list of specific channels that have some linear coherence with the H1:CAL-
DELTAL_EXTERNAL_DQ strain. More specifically, this algorithm is able to output the top
twenty channels that have the highest coherence with the strain relevant at each frequency.
The following link is the most updated list that was generated by Dr. Gabriele Vajente
to utilize for this project: https://ldas-jobs.ligo.caltech.edu/~gabriele.vajente/
bruco_1f_2021_06_22/.

With the list of top linear coherences, it was easier to pick the best coherent channels in a
systematic manner. Each of the channels that were picked at the corresponding frequency
ranges listed in Tables I and II had the most relevance to the overall range instead of just
at an individual frequency according to the generated list.

However, it was discovered that while certain auxiliary channels appeared to have coher-
ence with the target, they were not a direct source of the noise coupling. For example,
certain channels that are used for control systems purposes do not contain GW signals at
all. Other channels are repeated channels such as the ASC-DSOFT_P_OUT_DQ and ASC-
DSOFT_P_SM _DQ channels, which means that one of the channels should be omitted when
doing the subtraction.
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5.5 Linear Subtraction

A series of linear subtractions was performed based on which channels had the best coherence
with the target channel. The channels that was shown to have the largest subtraction were
combined into a single list of noise witnesses and a full subtraction was performed for that.

Best Noise Witness Channels:
ASC-DSOFT_P_IN1_DQ
ASC-DHARD_P_IN1_.DQ

ASC-X_TR_B_PIT_.OUT_DQ
ASC-X_TR_B_.YAW_OUT_DQ
ASC-X_TR_A_PIT_OUT_DQ
ASC-X_TR_A_YAW_OUT_DQ

SUS-SRM_M3_ISCINF_L_IN1_DQ

SUS-SRM_M3_ISCINF_P_IN1_DQ

SUS-SRM_M3_ISCINF_Y_IN1_DQ
SUS-SRM_M3_WIT_P_DQ
SUS-SRM_M3_WIT_Y_DQ
SUS-SRM_M3_WIT_L_DQ

SUS-ZM2_M1_VOLTMON_UL_OUT_DQ
SUS-ZM2_M1_VOLTMON_LL_OUT_DQ
SUS-ZM2_M1_VOLTMON_LR_OUT_DQ

Table 3: A list of the best channels for linear subtraction with H1:CAL-
DELTAL_EXTERNAL_DQ. These channels were chosen from the list of the top linear co-
herence. Each channel was then linearly subtracted from the target individually to check for
the contribution before being appended to this list.
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10°° | =™ Original Signal
1w Linear/Stationary Signal

107 4

Figure 20: This plot is the best linear and stationary subtraction subtraction, using the list
of noise witness channels that are given Table The ratio plot on the bottom gives a
clearer indication of the amount of noise that is being subtracted (any time the ratio goes
above 1.0 indicates subtraction while any time the ratio goes below 1.0 indicates addition

instead).
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Figure 21: This plot is the time domain version of the plot in Fig.

5.6 Non-Linear Subtraction

In order to perform the non-linear subtraction with the NonSENS algorithm, the same pa-
rameters from the linear subtraction can be used along with an added parameter now: the list
of modulation witness channels. Choosing a set of modulation channels is harder than select-
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ing fast noise channels because there is no systematic way of selecting such auxiliary channels.
Therefore, as a starting point, it is logical to pull from previous successful tests which was

done with the 10-30 Hz subtraction on the “DCS-CALIB_STRAIN_CLEAN_SUB60HZ_C01”
strain, which was shown in Fig. [9

Modulation Witness Channels:
ASC-INP1_P_INMON
ASC-INP1_Y_INMON
ASC-MICH_P_INMON
ASC-MICH_Y_INMON
ASC-PRC1_P_INMON
ASC-PRC1_Y_INMON
ASC-PRC2_P_INMON
ASC-PRC2_Y_INMON
ASC-SRC1_P_INMON
ASC-SRC1_Y_INMON
ASC-SRC2_P_INMON
ASC-SRC2_Y_INMON

ASC-DHARD_P_INMON
ASC-DHARD_Y_INMON
ASC-CHARD_P_INMON
ASC-CHARD_Y_INMON
ASC-DSOFT_P_INMON
ASC-DSOFT_Y_INMON
ASC-CSOFT_P_INMON
ASC-CSOFT_Y_INMON

Table 4: A list of the modulation channels for non-linear subtraction with H1:CAL-
DELTAL_EXTERNAL_DQ. These channels were originally used successfully for subtraction
between 10-30 Hz, which was the lowest subtraction performed so far. The ASC signals
comes from the part of the detector system that helps to “align” the suspended test masses
as a way to counteract seismic disturbances. [14] Noise couplings in the “lower” frequency
regime are usually related to seismic motion. This is why for the modulation witness and
noise witness auxiliary channels, ASC and SUS channels were considered to be reasonable
starting points for this project.

The non-linear subtraction poses another challenge since the algorithm does not always
converge for every run. The cost function, as mentioned before, helps to indicate how good
or bad the model in each run performs. The following figures show two different trials
utilizing the same parameters in both runs to exemplify this.

page 24



LIGO-T2100342-v1

PSD between Original Target Channel H1:CAL-DELTAL_EXTERNAL_DQ and Subtracted Signals (Linear and Nonlinear Subtractions)

1041 = Target signal
i Subtracted Signal (Linear Subtraction)
= Subtracted Signal (Non-Linear Subtraction)

Linear Original/Subtracted Ratio
= Non-Linear Original/Subtracted Ratio

Frequency [Hz]

Figure 22: The top portion of this plot shows the subtraction, using the list of noise witness
channels and the modulation witness channels that are given in Table[5.5/and [5.6 The linear
subtraction, indicated with the orange line, is plotted along side with the non-linear subtrac-
tion, indicated by the blue line, in order to show how much improvement in the subtraction
there there between the two. Intuitively, the non-linear subtraction should perform either
the same or better than the linear subtraction. However, the algorithm does not always guar-
antee converge for the non-linear subtraction; in other words, the algorithm demonstrates
its stochastic nature when trying to obtain the optimal solution. The bottom portion of the
plot shows the ratios between each of the subtracted signals to the original signal, which
makes it easier to visually see how much the subtractions have improved/worsened. From
the range of about 2 — 4 Hz, there is slight improvement by the non-linear subtraction;
however, over the 6 Hz range, the non-linear subtraction actually appears to have gotten
worse. This indicates that the algorithm might not have converged well in this run at that
frequency range. However, the next plot below will show a different run in which the same
range improves instead.
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PSD between Original Target Channel H1:CAL-DELTAL_EXTERNAL_DQ and Subtracted Signals (Linear and Nonlinear Subtractions)

1041 = Target signal
i Subtracted Signal (Linear Subtraction)
= Subtracted Signal (Non-Linear Subtraction)

Linear Original/Subtracted Ratio
= Non-Linear Original/Subtracted Ratio

00 +

Frequency [Hz]

Figure 23: This subtraction was performed with the exact same parameters and channels
that was done in the previous plot, Fig. 22l However, there are apparent differences in
this run than that last. Between the 2 — 10 Hz range, the subtractions of the non-linear
and linear seem virtually similar - in that there is not really an improvement with the non-
linear subtraction. However, there is a slight notable improvement with the non-linear in
the 10 — 11 Hz range, which the previous run had the opposite effect.

6 Conclusion

The objective of this project was to determine how effective a non-linear subtraction could
be on the CAL-DELTAL_EXTERNAL_DQ calibrated strain below 10 Hz. This was done
by selecting the appropriate auxiliary channels that are relevant to the strain between the
1-10 Hz frequency regime. The motivation was to contribute to the study of the search
for GW memory from core-collapse supernovae, in which the low-frequency GW emission is
theoretically found between the 107> Hz and 50 Hz range. [2] Previous experiments utilizing
the NonSENS algorithm have found significant improvement with doing subtractions over
the 10 Hz range; however, none was ever done below.

This project proved that there are some relevant noise improvements below 10 Hz utilizing
certain SUS and ASC auxiliary channels. However, the results proved that it may not be
completely viable to subtract a large amount at such a low range due to the capabilities
of current LIGO detectors. The sensitivity of the detectors would need to be increased
significantly in order to capture the GW emission from a core-collapse supernovae below
10 Hz. Therefore, it is not practical to attempt further subtraction nor run the algorithm
through all of the O3 data if the results show a lack of improvement in the noise mitigation
to be effective at this time.
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