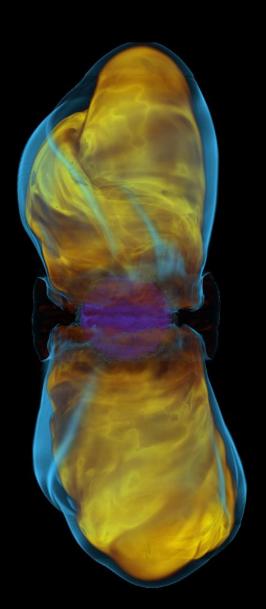


OUTLINE

Motivation

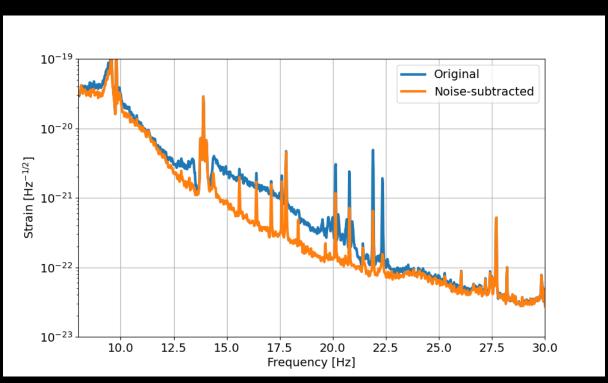
NonSENS Algorithm


Results

Questions

MOTIVATION

CORE-COLLAPSE SUPERNOVAE


- when a massive star reaches the end of its lifespan and experiences rapid collapse
- in an event such as a galactic supernova, a fraction of the GW memory might be able to be detected above the noise floor
 - GW "memory" is permanent deformation of spacetime in the LOW FREQUENCY range of the signal
- GW memory emission of CCSN's can peak below ~10 Hz
 - has the center frequency around 2Hz but it has tails that survive up to 40Hz and that can be above the current LIGO noise for a galactic SN

NONSENS ALGORITHM

- Non-Stationary Estimation of Noise Subtraction
- Original application of the algorithm used for subtraction in frequency ranges over 10 Hz
- Now we want to modify the algorithm to perform similar noise reductions under 10 Hz

Project Goal: reduce the noise in the range where the GW memory is relevant for a CCSN

https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=57423

NONSENS ALGORITHM

NONSENS ALGORITHM

- Was created to reduce the noise that are coupled non-linearly and non-stationary in a strain signal
 - Noise "couples" or leak into main signal; limits sensitivity of detectors
 - Noise coupling physical process of adding some noise sources to the GW output

$$h(t) = h_{GW} + H[s(t)] + \sum_{i=1}^{N} \alpha_i [x_i(t)s(t)] + \varepsilon_F$$

 h_{GW} = Gravitational Waves signal

 α_i = non-linear noise coupling

H = linear noise coupling

s(t) = "fast" noise witness

 $x_i(t)$ = "slow" modulation noise witness

WHAT IS THE NON-LINEAR SUBTRACTION?

• In the linear and stationary subtraction, the noise that is witnessed by some auxiliary channel will couple to the strain

$$\boldsymbol{\varepsilon_L} = \int_0^\infty h(\tau)s(t-\tau)d\tau = \boldsymbol{H[s(t)]}$$

• In the non-stationary case, the coupling is modulated (In other words, the effects of the noise in the strain contains non-stationary characteristics)

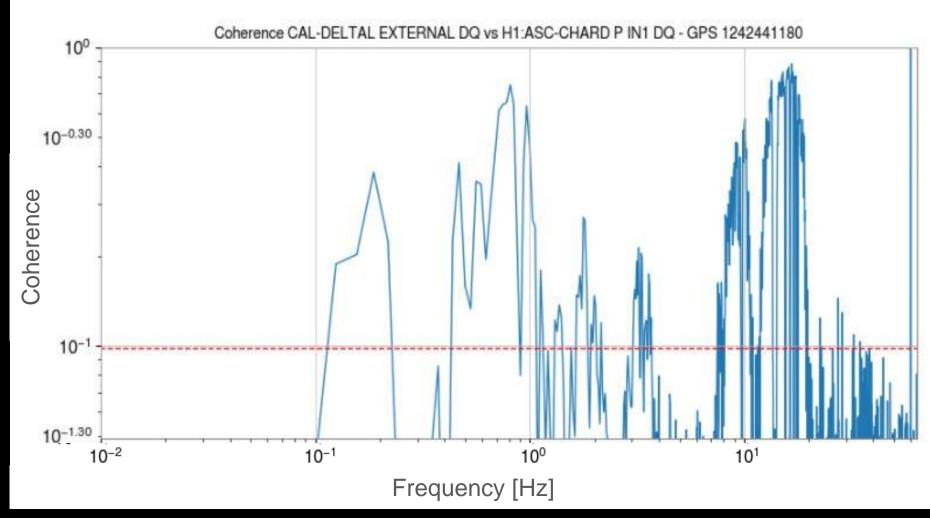
$$\varepsilon_{NL} = \sum_{i=1}^{N} \int_{0}^{\infty} \alpha_{i}(\tau) n_{i}(t-\tau) d\tau = \sum_{i=1}^{N} \alpha_{i}[x_{i}(t)s(t)] \qquad \text{Where:} \\ n_{i}(t) = x_{i}(t)s(t)$$

AUXILIARY CHANNELS

Auxiliary channel – time series data recorded by the detector; monitors detector behavior and environment

- s(t), fast noise witnesses contains content in the higher frequency band (1-10 Hz)
- $x_i(t)$, slow modulation witness contains content in the lower frequency band (below 1 Hz)

SUBTRACTION


- The modulated signals are coupled with the non-stationary transfer function $lpha_i$
- Then:

$$h_{sub}(t) = h(t) - sum \ of \ modulated \ signals$$

 Purpose of algorithm is to find the best parameters that will reduce the maximum amount of noise from the target strain as possible; the algorithm then will perform a prediction of the most optimal subtraction possible

RESULTS

Step 1) Linear Coherence:

RESULTS:

Linear coherence describes the correlation between the two signals in the frequency domain.

https://ldas-jobs.ligo.caltech.edu/~gabriele.vajente/bruco_lf_2021_06_22/

RESULTS:

Step 2) Picking fast noise witness channels that perform the best linear subtraction

Best Noise Witness Channels:

ASC-DSOFT_P_IN1_DQ ASC-DHARD_P_IN1_DQ ASC-X_TR_B_PIT_OUT_DQ ASC-X_TR_B_YAW_OUT_DQ ASC-X_TR_A_PIT_OUT_DQ ASC-X_TR_A_YAW_OUT_DQ SUS-SRM_M3_ISCINF_L_IN1_DQ SUS-SRM_M3_ISCINF_P_IN1_DQ SUS-SRM_M3_ISCINF_Y_IN1_DQ SUS-SRM_M3_WIT_P_DQ SUS-SRM_M3_WIT_Y_DQ SUS-SRM_M3_WIT_L_DQ SUS-ZM2_M1_VOLTMON_UL_OUT_DQ SUS-ZM2_M1_VOLTMON_LL_OUT_DQ SUS-ZM2_M1_VOLTMON_LR_OUT_DQ Some naming convention for channels:

Subsystems:

ASC - Alignment Sensing and Control **SUS** – Suspension

Mirror Identifiers:

SRM – Signal Recycling Mirrors

ZM2 – 2nd Squeezer Mirror

M1, M3 – Suspension levels

Signal Identifiers:

DSOFT – differential control arms (soft)

DHARD – different control arms (hard)

X_TR – transmission to X arm

RESULTS:

Step 3) Try non-stationary subtraction by adding "slow" modulation channels.

Modulation Witness Channels:

ASC-INP1_P_INMON

ASC-INP1_Y_INMON

ASC-MICH_P_INMON

ASC-MICH_Y_INMON

ASC-PRC1_P_INMON

ASC-PRC1_Y_INMON

ASC-PRC2_P_INMON

ASC-PRC2_Y_INMON

ASC-SRC1_P_INMON

ASC-SRC1_Y_INMON

ASC-SRC2_P_INMON

ASC-SRC2_Y_INMON

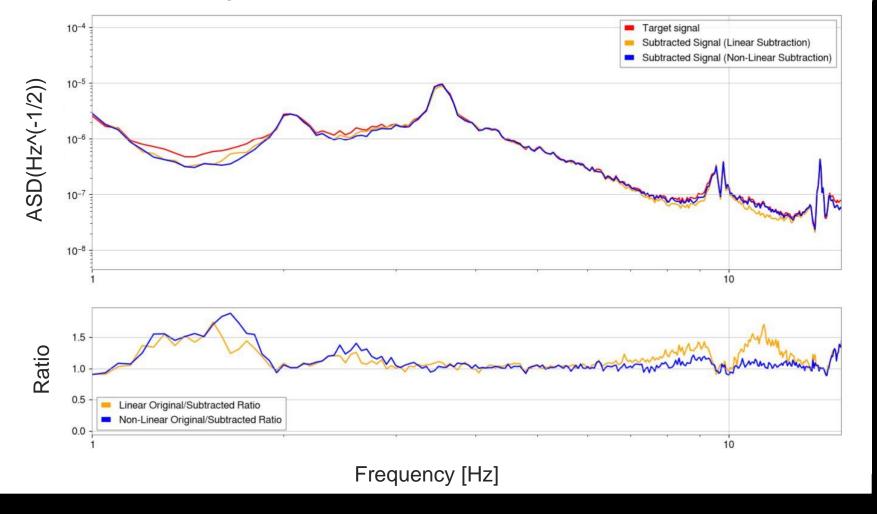
ASC-DHARD_P_INMON

ASC-DHARD_Y_INMON

ASC-CHARD_P_INMON

ASC-CHARD_Y_INMON

ASC-DSOFT_P_INMON


ASC-DSOFT_Y_INMON

ASC-CSOFT_P_INMON

ASC-CSOFT_Y_INMON

Time Domain Subtraction Plot:

PSD between Target Channel H1: CAL-DELTAL_EXTERNAL_DQ and Subtracted Signals (Linear and Nonlinear Subtraction)

RESULTS:

*algorithm doesn't always converge; no guarantee you will get an optimal solution

IS THIS RESULT GOOD?

- Original plan was to run algorithm through all of the O3 data
 - Takes a lot of time/computation
 - Goal is to do more subtraction in order to be able to be effective for study at lower frequency range
 - more possible channels relevant to the noise sources in the low frequency range should be assessed – mainly only the SUS and ASC channels were found in this project
- Continuation of project ©

ACKNOWLEDGEMENTS

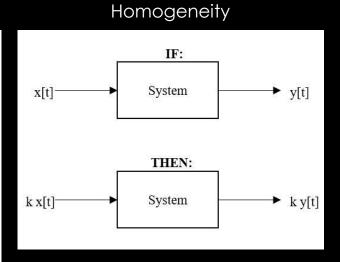
A special thanks to:

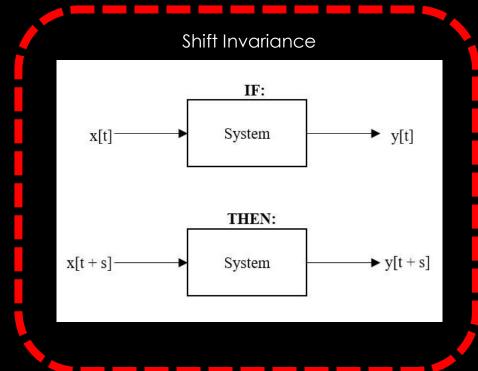
Dr. Gabriele Vajente (mentor)

LIGO Summer Undergraduate Research Fellowship

Research Experiences for Undergraduates (REU) Program of the

National Science Foundation


Thank you for listening!
Any Questions?


Contact: liny10@my.erau.edu

LINEAR/NONLINEAR SYSTEM

System – process in which an output signal is produced as a result of the response to an input signal

Additivity IF: x1[t]System y1[t] x2[t]System y2[t]THEN: x1[t] + x2[t]System y1[t] + y2[t]

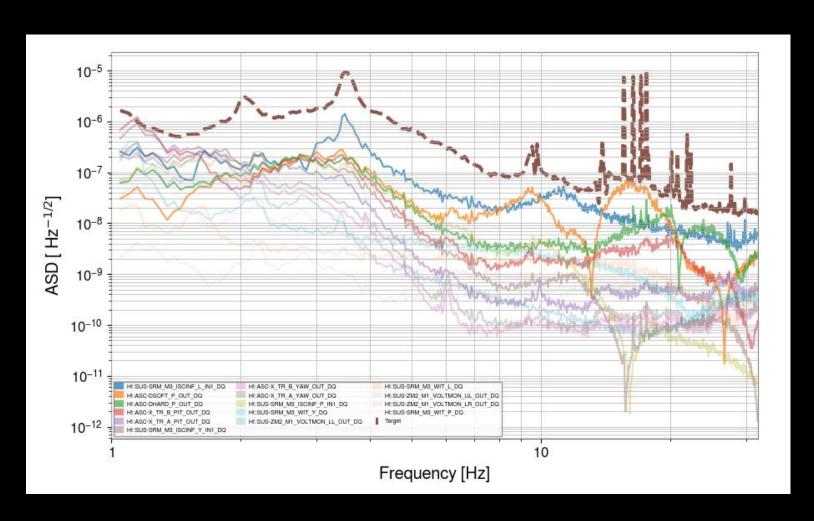
LINEAR AND TIME INVARIANT SYSTEM

Properties:
Additivity
Homogeneity
Shift Invariance

$$x(t) = k_1 x(t - t_1) + k_2 x(t - t_2) + \dots + k_i x(t - t_i)$$

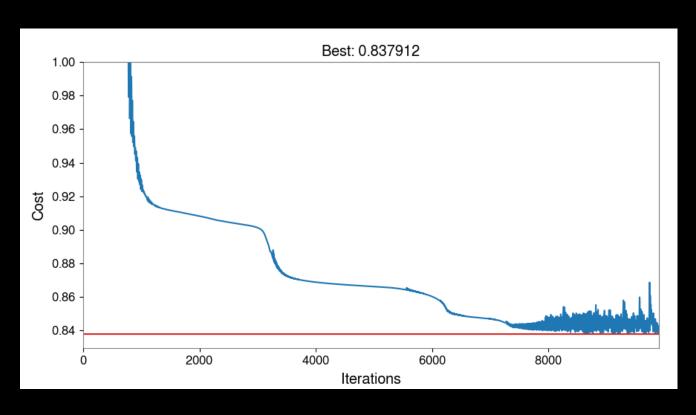
$$x(t) = \sum_{i=1}^{N} k_i x(t - t_i)$$

$$x(t) = \int_0^\infty k(\tau)\delta(t-\tau)d\tau = (k*h)(t)$$


"TARGET" STRAIN CHANNEL (SUPPLEMENTAL)

h(t)

- The target channel is the channel that we want to subtract the noise from
- For this project, utilize: CAL-DELTAL_EXTERNAL_DQ
 - produces the calibrated strain signals that are corrected below 10 Hz
 - Advantage: the only channel currently that contains calibrated strain below 10 Hz.
 - Disadvantage: less accuracy than the GDS-CALIB_STRAIN channel, which was the target channel that was originally used for subtracting noise between 10 and 30 Hz


Contribution plot:

(SUPPLEMENTAL) RESULTS:

(SUPPLEMENTAL) RESULTS:

Cost Function:

- Optimized parameter is the minimum value that is calculated by the cost function
- Algorithm doesn't always converge

(SUPPLEMENTAL) MODULATED SIGNALS

 $x_1(t)$ $s_1(t)$ $x_1(t)$ $x_2(t)$ $s_2(t)$ $x_2(t)$ $x_3(t)$ X $s_3(t)$ $x_3(t)$ $x_4(t)$ $s_4(t)$ $x_4(t)$ $x_1(t) \cdot s_1(t)$ $s_5(t)$ $x_1(t) \cdot s_2(t)$ $x_1(t) \cdot s_3(t)$ $x_1(t) \cdot s_4(t)$ Noise Witnesses Modulation signals Witnesses signals $x_2(t) \cdot s_1(t)$ $x_2(t) \cdot s_2(t)$

Total Modulated signals

 $x_4(t) \cdot s_5(t)$