LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T2 $100299-\mathrm{v} 3 \quad$ 8/17/2021

Test Procedure for IO Interface Backplane

Marc Pirello, Daniel Sigg

Distribution of this document:
LIGO Scientific Collaboration
This is an internal working note of the LIGO Laboratory.

California Institute of Technology
LIGO Project - MS 18-34
1200 E. California Blvd.
Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu
LIGO Hanford Observatory
P.O. Box 159

Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

Massachusetts Institute of Technology
LIGO Project - NW22-295
185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu
LIGO Livingston Observatory
P.O. Box 940

Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189
http://www.ligo.caltech.edu/

1 Introduction

The following Test Procedure describes the test of proper operation of the PCIe Timing Interface.

S/N \qquad Tester \qquad

Date \qquad

2 Test Equipment

- Voltmeter
- Oscilloscope
- Fiber from a Timing Master/Fanout (optional),
- Windows PC with open motherboard with at least 1 PCIe slot free. Alternatively, use a PC with a PCIe extender like the Adnaco.
- Extra PC ATX power supply
- Adapter: Dual PSU power supply 24-pin adapter cable for ATX motherboard, and
- 2 test adapter board for backplane, D2100184.
- Breakout Boards - DB25 if needed

3 Preparations

- PC needs to run Windows 10, 64-bit, no secure boot.
- Install the device driver for LIGO Timing.
- Install the LIGOTimingApp program.
- Install a PCIe timing board in the PC and make sure the driver is loaded (it should show up in the Device Manager as "Timing > LIGO Timing Device").

4 Caution

When connecting test adapters, backplanes and daughter cards, it is important that the correct FPGA program is loaded. Otherwise, it is possible to short two outputs together which can potentially damage the board.

- The backplane, D20000297, daughter board, D2000331, and the GPS expansion module, D2000301, require the FPGA timing code, E2000337.

5 Backplane Test

Setup the backplane with the extra ATX power supply and with the dual PSU Power Supply 24pin adapter cable. Turn on the power.

1) Check the voltages and LEDs on the backplane.

TP7 (+12V) \qquad TP3 (+3.3V) \qquad
TP10 (+5 V) \qquad
\square LED DS1 (green)
\square LED DS2 (green)
\square LED DS3 (green)
2) Insert PCIe board into PC, connect the DB37 cable.

Run the LIGO Timing App program and make sure it is running.
Set the frequencies of the backplane slots (Converter tab) to 16, 17, 18, 19, 20, 0, 15, $-1,14$, and 13. Enable all slots. Set Out1 and Out 2 in the fields with white background.

1: Device driver connected
Make sure the backplane is enabled:
2: All enabledNominal: check
3: All runningNominal: green
4: Press watchdog button, and check the watchdog go green for $\sim 2 \mathrm{sec}$.
5: Watchdog indicatorNominal: 2sec-green
6: Short pins $1 \& 2$ on P3 header

3) Install two backplane adapter boards into slots 1 and 2, then equip them with DB25 breakout boards.

Toggle Slot 1/ADC DT:Nominal: Turns off $1^{\text {st }}$ LED in slot 1
Toggle Slot 2/ADC DT:Nominal: Turns off $1^{\text {st }}$ LED in slot 2
Toggle slot 1/DAC DT:
Toggle slot 2/DAC DT:Nominal: Turns off $2^{\text {nd }}$ LED in slot 1

Toggle slot 1/Bit 1:
Toggle slot 2/Bit 1:Nominal: Turns off $2^{\text {nd }}$ LED in slot 2

Toggle slot 1/Bit 2:
Toggle $1^{\text {st }}$ switch in slot 1 :Nominal: Turns on $3^{\text {rd }}$ LED in slot 1

Toggle $1^{\text {st }}$ switch in slot 2 :Nominal: Turns on $3^{\text {rd }}$ LED in slot 2Nominal: Turns on $4^{\text {th }}$ LED in slots $1 \& 2$

Toggle $2^{\text {nd }}$ switch in slot 1 :Nominal: ADC Mon 1 comes on in slot 1

Toggle $2^{\text {nd }}$ switch in slot 2 :Nominal: ADC Mon 1 comes on in slot 2

Toggle $3^{\text {rd }}$ switch in slot 1 :Nominal: ADC Mon 2 comes on in slot 1

Toggle $3^{\text {rd }}$ switch in slot 2 :Nominal: ADC Mon 2 comes on in slot 2Nominal: DAC Mon 1 comes on in slot 1

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 1:Nominal: 65536 Hz with LVDS on
Pin 2/slot 1:Nominal: 65536 Hz with LVDS on
Pin 3/slot 1 :Nominal: 131072 Hz with LVDS on
Pin 4/slot 1 :Nominal: 65536 Hz with LVDS off
Pin 5/slot 1:Nominal: 65536 Hz with LVDS off
Pin 1/slot 2:Nominal: 131072 Hz with LVDS on
Pin 2/slot 2:Nominal: 65536 Hz with LVDS on
Pin 3/slot 2: Nominal: 131072 Hz with LVDS on
Pin 4/slot 2:Nominal: 131072 Hz with LVDS off
Pin 5/slot 2:Nominal: 131072 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $1 \& 2$:Short
With an Ohmmeter check short between pin 21 on slots $1 \& 2$:Short
With a scope check for DuoTone on pin 7 in slot 1:On
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!):On
With a scope check watchdog on pin 25 in slot 2 (press watchdog button!):On
4) Install two backplane adapter boards into slots 3 and 4, then equip them with DB25 breakout boards.

Toggle Slot 3/ADC DT:
\square Nominal: Turns off $1^{\text {st }}$ LED in slot 3
Toggle Slot 4/ADC DT:Nominal: Turns off $1^{\text {st }}$ LED in slot 4
Toggle slot 3/DAC DT:Nominal: Turns off $2^{\text {nd }}$ LED in slot 3
Toggle slot 4/DAC DT:
Toggle slot 3/Bit 1:Nominal: Turns off $2^{\text {nd }}$ LED in slot 4

Toggle slot 4/Bit 1 :
Toggle slot 3/Bit 2:Nominal: Turns on $3^{\text {rd }}$ LED in slot 3

Toggle $1^{\text {st }}$ switch in slot 3:
Nominal: Turns on $3^{\text {rd }}$ LED in slot 4Nominal: Turns on $4^{\text {th }}$ LED in slots $3 \& 4$

Toggle ${ }^{\text {st }}$ switch in slot 4:
Toggle $2^{\text {nd }}$ switch in slot 3:Nominal: ADC Mon 1 comes on in slot 3

Toggle $2^{\text {nd }}$ switch in slot 4:
Toggle $3^{\text {rd }}$ switch in slot 3:
\square Nominal: ADC Mon 1 comes on in slot 4Nominal: ADC Mon 2 comes on in slot 3

Toggle $3^{\text {rd }}$ switch in slot 4:
\square Nominal: ADC Mon 2 comes on in slot 4
\square Nominal: DAC Mon 1 comes on in slot 3Nominal: DAC Mon 1 comes on in slot 4

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 3:
\square Nominal: 262144 Hz with LVDS on
Pin 2/slot 3:Nominal: 262144 Hz with LVDS on
Pin 3/slot 3:Nominal: 524288 Hz with LVDS on
Pin 4/slot 3:Nominal: 262144 Hz with LVDS off
Pin 5/slot 3: Nominal: 262144 Hz with LVDS off
Pin 1/slot 4: Nominal: 524288 Hz with LVDS on
Pin 2/slot 4: Nominal: 262144 Hz with LVDS on
Pin 3/slot 4: Nominal: 524288 Hz with LVDS on
Pin 4/slot 4: Nominal: 524288 Hz with LVDS off
Pin 5/slot 4:Nominal: 524288 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $3 \& 4$:

With an Ohmmeter check short between pin 21 on slots $3 \& 4$:
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!): With a scope check watchdog on pin 25 in slot 2 (press watchdog button!):
5) Install two backplane adapter boards into slots 5 and 6, then equip them with DB25 breakout boards.

Toggle Slot 5/ADC DT:
\square Nominal: Turns off $1^{\text {st }}$ LED in slot 5
Toggle Slot 6/ADC DT: \square Nominal: Turns off $1^{\text {st }}$ LED in slot 6
Toggle slot 5/DAC DT:Nominal: Turns off $2^{\text {nd }}$ LED in slot 5
Toggle slot 6/DAC DT:
Toggle slot 5/Bit 1:Nominal: Turns off $2^{\text {nd }}$ LED in slot 6

Toggle slot 6/Bit 1:Nominal: Turns on $3^{\text {rd }}$ LED in slot 5

Toggle slot 5/Bit 2:Nominal: Turns on $3^{\text {rd }}$ LED in slot 6

Toggle $1^{\text {st }}$ switch in slot 5:Nominal: Turns on $4^{\text {th }}$ LED in slots $5 \& 6$

Toggle ${ }^{\text {st }}$ switch in slot 6 :
Toggle $2^{\text {nd }}$ switch in slot 5:Nominal: ADC Mon 1 comes on in slot 5

Toggle $2^{\text {nd }}$ switch in slot 6:
Toggle $3^{\text {rd }}$ switch in slot 5:
\square Nominal: ADC Mon 1 comes on in slot 6
\square Nominal: ADC Mon 2 comes on in slot 5

Toggle $3^{\text {rd }}$ switch in slot 6: \square Nominal: ADC Mon 2 comes on in slot 6 \square Nominal: DAC Mon 1 comes on in slot 5

Toggle $4^{\text {th }}$ switch in slot 6:Nominal: DAC Mon 1 comes on in slot 6Nominal: X1 goes off (backplane tab)

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 5: $\quad \square$ Nominal: 1048576 Hz with LVDS on
Pin 2/slot 5:Nominal: 1048576 Hz with LVDS on
Pin 3/slot 5:Nominal: 1 Hz with LVDS on
Pin 4/slot 5:Nominal: 1048576 Hz with LVDS off
Pin 5/slot 5:Nominal: 1048576 Hz with LVDS off
Pin 1/slot 6:Nominal: 1 Hz with LVDS on
Pin 2/slot 6:Nominal: 1048576 Hz with LVDS on
Pin 3/slot 6:Nominal: 1 Hz with LVDS on
Pin 4/slot 6:Nominal: 1 Hz with LVDS off
Pin 5/slot 6:Nominal: 1 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $5 \& 6$:

With an Ohmmeter check short between pin 21 on slots $5 \& 6$:Short
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!):On
With a scope check watchdog on pin 25 in slot 2 (press watchdog button!):
6) Install two backplane adapter boards into slots 7 and 8, then equip them with DB25 breakout boards.

Toggle Slot 7/ADC DT:
\square Nominal: Turns off $1^{\text {st }}$ LED in slot 7
Toggle Slot 8/ADC DT: \square Nominal: Turns off $1^{\text {st }}$ LED in slot 8
Toggle slot 7/DAC DT:Nominal: Turns off $2^{\text {nd }}$ LED in slot 7
Toggle slot 8/DAC DT:
Toggle slot 7/Bit 1:Nominal: Turns off $2^{\text {nd }}$ LED in slot 8

Toggle slot 8/Bit 1: Nominal: Turns on $3^{\text {rd }}$ LED in slot 7

Toggle slot 7/Bit 2:Nominal: Turns on $3^{\text {rd }}$ LED in slot 8

Toggle $1^{\text {st }}$ switch in slot 7 :Nominal: Turns on $4^{\text {th }}$ LED in slots $7 \& 8$

Toggle $1^{\text {st }}$ switch in slot 8 :Nominal: ADC Mon 1 comes on in slot 7

Toggle $2^{\text {nd }}$ switch in slot 7: \square Nominal: ADC Mon 1 comes on in slot 8

Toggle $2^{\text {nd }}$ switch in slot 8 : \square Nominal: ADC Mon 2 comes on in slot 7

Toggle $3^{\text {rd }}$ switch in slot 7: \square Nominal: ADC Mon 2 comes on in slot 8

Toggle $3^{\text {rd }}$ switch in slot 8:Nominal: DAC Mon 1 comes on in slot 7

Toggle $4^{\text {th }}$ switch in slot 8 :Nominal: DAC Mon 1 comes on in slot 8

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 7:
\square Nominal: 32768 Hz with LVDS on
Pin 2/slot 7:Nominal: 32768 Hz with LVDS on
Pin 3/slot 7:Nominal: 0.5 Hz with LVDS on
Pin 4/slot 7:Nominal: 32768 Hz with LVDS off
Pin 5/slot 7:Nominal: 32768 Hz with LVDS off
Pin 1/slot 8:Nominal: 0.5 Hz with LVDS on
Pin 2/slot 8:Nominal: 32768 Hz with LVDS on
Pin 3/slot 8:Nominal: 0.5 Hz with LVDS on
Pin 4/slot 8:Nominal: 0.5 Hz with LVDS off
Pin 5/slot 8: Nominal: 0.5 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $7 \& 8$:

With an Ohmmeter check short between pin 21 on slots $7 \& 8$:
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!):
With a scope check watchdog on pin 25 in slot 2 (press watchdog button!):
7) Install two backplane adapter boards into slots 9 and 10, then equip them with DB25 breakout boards.

Toggle Slot 9/ADC DT:
\square Nominal: Turns off $1^{\text {st }}$ LED in slot 9
Toggle Slot 10/ADC DT: \square Nominal: Turns off $1^{\text {st }}$ LED in slot 10
Toggle slot 9/DAC DT:
Toggle slot 10/DAC DT:
Toggle slot 9/Bit 1:
Toggle slot 10/Bit 1:
Toggle slot 9/Bit 2:Nominal: Turns off $2^{\text {nd }}$ LED in slot 9Nominal: Turns off $2^{\text {nd }}$ LED in slot 10

Toggle $1^{\text {st }}$ switch in slot 9 :
Toggle $1^{\text {st }}$ switch in slot 10 :
Toggle $2^{\text {nd }}$ switch in slot 9 :
Toggle $2^{\text {nd }}$ switch in slot 10 :
Toggle $3^{\text {rd }}$ switch in slot 9:Nominal: Turns on $3^{\text {rd }}$ LED in slot 9Nominal: Turns on $3^{\text {rd }}$ LED in slot 10

Toggle $3^{\text {rd }}$ switch in slot 10 :Nominal: Turns on $4^{\text {th }}$ LED in slots $9 \& 10$Nominal: ADC Mon 1 comes on in slot 9
\square Nominal: ADC Mon 1 comes on in slot 10Nominal: ADC Mon 2 comes on in slot 9Nominal: ADC Mon 2 comes on in slot 10Nominal: DAC Mon 1 comes on in slot 9

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 9:
\square Nominal: 16384 Hz with LVDS on
Pin 2/slot 9:
Pin 3/slot 9: Nominal: 16384 Hz with LVDS on

Pin 4/slot 9: Nominal: 8192 Hz with LVDS on

Pin 5/slot 9: Nominal: 16384 Hz with LVDS off

Pin 1/slot 10:Nominal: 16384 Hz with LVDS off

Pin 2/slot 10 : Nominal: 8192 Hz with LVDS on

Pin 3/slot 10: \square Nominal: 16384 Hz with LVDS on

Pin 4/slot 10 :Nominal: 8192 Hz with LVDS on

Pin 5/slot 10 : \square Nominal: 8192 Hz with LVDS offNominal: 8192 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $9 \& 10$:

With an Ohmmeter check short between pin 21 on slots $9 \& 10$:
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!): With a scope check watchdog on pin 25 in slot 2 (press watchdog button!):

6 Pass/Fail

\bigcirc Pass

- Fail

C omments:
\qquad

