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Core-collapse supernovae
❖ Massive stars ( ) collapse under their own gravity at the 

end of their life 

❖ Implosion turns into explosion as the inner core reaches nuclear 
densi;es, rebounds and launches a shock wave 

❖ Ini;al energy of the shock is not enough to break out of the 
core for a successful explosion - it stalls 

❖ How is the shock re-energized? What mechanism powers the 
explosion?

≳ 8 M⊙

H. T. Janka (2017)
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❖ Asymmetric explosion: Any non-spherical, 
accelerated mass mo;ons in the dense SN 
core act as a source of GWs 

❖ GWs (and neutrinos) from CCSN thus 
probe the central engine driving the 
explosion - not possible with EM!
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Gravitational waves from CCSN

Nakamura et al. (2016)
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❖ Dominant emission from surface oscilla;ons 
of Proto Neutron Star - (g and f modes) 

❖ Hydrodynamic instabili;es - highly 
asymmetric turbulent flow and SASI 

❖ Detec;on will allow us to use GW features 
to dis;nguish between different explosion 
models and mechanisms, extract 
astrophysical parameters
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Gravitational waves from CCSN

Radice et al. (2019)
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❖ A GW signal reconstruc;on algorithm for short 
bursts  that makes no assump;ons 
about the signal morphology (Cornish & 
LiRenberg 2015) 

❖ Uses a trans-dimensional reversible jump MCMC 
to model both the signal and instrumental noise 

❖ Places a variable number of Morlet-Gabor (sine-
Gaussian) wavelets, the linear combina;on of 
which forms the whole reconstructed signal

( ≲ 1 s)
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The BayesWave algorithm
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❖ Use GW waveforms generated from the latest 3D GRMHD simula;ons of CCSN 

❖ Inject the waveform into simulated design sensi;vity Advanced LIGO and Advanced Virgo 
noise for the Hanford, Livingston and Virgo detectors 

❖ For each model do many injec;ons while varying extrinsic parameters: 

• sky posi;ons 

• source orienta;ons 

• distances
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Simulating supernova signals in Adv. LIGO-Virgo
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❖ Perform waveform reconstruc;on of the GW signal with BayesWave 

❖ Tune the BayesWave algorithm to maximize waveform recovery 

❖ Preliminary results from one model in this talk: Powell 2019 s18 neutrino-driven 
explosion of  non-rota;ng progenitor star (Powell & Muller 2019)18 M⊙
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Recovering supernova signals
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Some typical reconstructions (Powell 2019)

8

injected signal 
injected signal + noise 
reconstructed signal

❖ Injected Network SNR  (distance )∼ 20 ∼ 8 kpc
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Some typical reconstructions (Powell 2019)
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❖ Injected Network SNR  (distance )∼ 55 ∼ 4 kpc

injected signal 
injected signal + noise 
reconstructed signal
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Population detection prospects

❖ Signal-Noise Evidence: Bayes factor or 
likelihood ra;o of the signal model 
compared to noise given the data 

❖ Classifying signal as confidently 
detected by BayesWave if reconstructed 
model log Signal-Noise Evidence  

❖ CCSN signals with  detected

> 8

SNR ≳ 20
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Population reconstruction prospects
❖ Overlap: normalized inner product of 

injected and reconstructed waveforms 
(characterizes quality of reconstruc;on) 

❖ Classifying signal as confidently recovered 
by BayesWave if Waveform Overlap  

❖ Signals with  confidently 
recovered - loudest signals reach an 
overlap accuracy of

> 0.5

SNR ≳ 30

∼ 90 %
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Population reconstruction prospects - distance

❖ All signals origina;ng at Galac;c 
distances of  are confidently 
recovered, and some up to  
away

≲ 5 kpc
∼ 10 kpc
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Reconstruction gains from tuning
❖ Current tuning giving up to beRer reconstruc;on overlap at lower SNR∼ 20 %
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Summary

❖ Can confidently detect and recover GW signals from Powell 2019 like neutrino 
driven supernova explosions in Advanced LIGO-Virgo for  

❖ Correspondingly all signals origina;ng at Galac;c distances of  are 
confidently recovered, and some up to  away 

❖ Tuning increases the reconstructed accuracy significantly, up to 20% for lower SNR 
signals - correspondingly many more events are confidently recovered

SNR ≳ 30

≲ 5 kpc
∼ 10 kpc
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Next steps

❖ Relaxing polariza;on constraints (Cornish et al. 2021), tweaking and tuning of 
more BayesWave segngs 

❖ Results for other supernova models, especially stronger magneto-rota;onally 
driven explosions 

❖ Comparison of astrophysical features recovered between different models

15Nayyer Raza, UBC 15/16 GWANW 2021



Acknowledgements
❖ This material is based upon work supported by NSF's LIGO Laboratory which is a major 

facility fully funded by the Na;onal Science Founda;on 

❖ The authors gratefully acknowledge the support of the NSF for provision of 
computa;onal resources 

❖ This research is funded by an NSERC Discovery Grant

16Nayyer Raza, UBC 16/16 GWANW 2021


