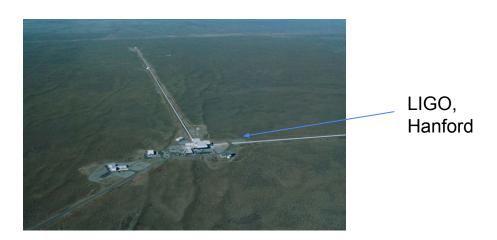
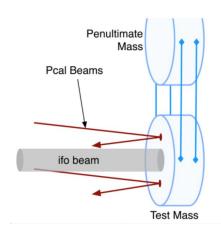
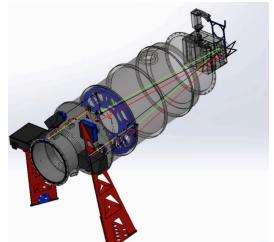


Initial Results from the LIGO Newtonian Calibrator

Colin M. Weller

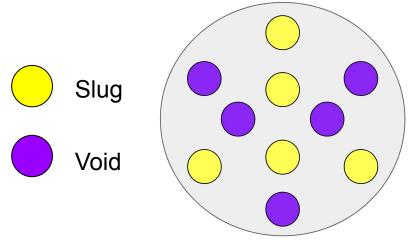

GWANW 2021

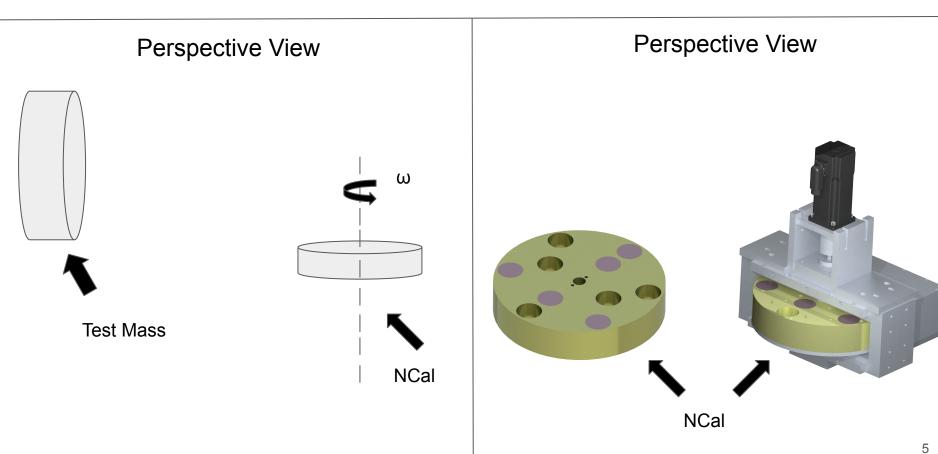

Outline


- Calibration at LIGO
- Introduce the Newtonian Calibrator
- Models
 - Finite Element Simulation
 - Multipole analysis
- Results
- Conclude

Calibration at LIGO

- Current calibration efforts rely on Photon Calibrator(PCal)
- Utilizes radiation pressure
- Motivate Newtonian Calibrator by having a collection of masses be source of a known force





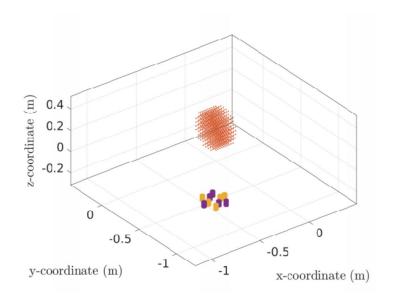
Newtonian Calibrator

- A collection of masses that applies a time-varying force
- Simple geometry allows us to predict force at multiples of rotation frequency
- 4-fold and 6-fold symmetry that have alternating slugs and voids
- More on hardware installation can be found in paper to be published tomorrow(P1900244)

Newtonian Calibrator

Modeling: Finite-Element Simulation

Within Newtonian limit gravity is linear:


$$F = F_{\rm Al~Disk}^{0f} + F_{\rm W~Quad.}^{2f} + F_{\rm W~Hex.}^{3f} + F_{\rm Oct.~Holes}^{4f} + F_{\rm Dodec.~Holes}^{6f}$$

 We approximate the total force by summing over all the forces between the point masses.

$$F = \sum_{i} \sum_{j} \frac{Gm_{i}M_{j}}{r_{ij}^{2}} \hat{r}_{ij}$$

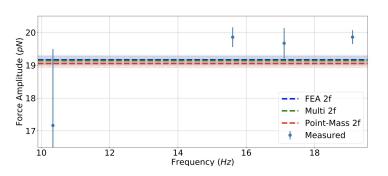
Modeling: Finite-Element Simulation

- Code used PointGravity libraries to simulate the geometry of NCal
- Source and test masses have grid points
- Total points are the grid point number cubed
- Rapid convergence with grid point number

Modeling: Multipole Expansion

- Independent Newt code was developed that calculated the multipole moments of the test and source masses from elementary shapes
- The force was calculated using the following summation

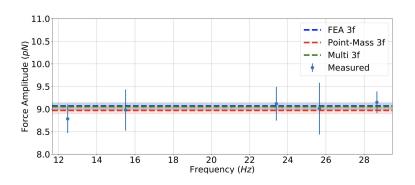
$$F = 4\pi G \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2l+1} Q_{lm} \nabla q_{lm}$$


Upper limit on \(\lambda \) was set to be 11

Results

- Both codes produce same force vs. azimuthal angle(of Ncal) plot.
- Least squares fit to find force amplitudes

Model	$F_x^{(2f)}$ (pN)	$F_x^{(3f)}$ (pN)
Finite-element	$19.18^{\pm 0.14}_{(\pm 0.75\%)}$	$9.07^{\pm 0.09}_{(\pm 0.95\%)}$
Multipole	$19.16^{\pm 0.14}_{(\pm 0.74\%)}$	$9.06^{\pm 0.09}_{(\pm 0.94\%)}$
Point-mass	$19.04^{\pm 0.15}_{(\pm 0.76\%)}$	$8.97^{\pm 0.09}_{(\pm 0.95\%)}$


2F

$$h(t) = a_2 \cos(2\pi \ 2f \ t) + b_2 \sin(2\pi \ 2f \ t) + a_3 \cos(2\pi \ 3f \ t) + b_3 \sin(2\pi \ 3f \ t)$$

3F

Conclusions and Future Plans

- We have created two independent models that accurately predicts a measured injected force
- We plan to set up future models with simultaneous injections of NCal and PCal
- Uncertainty in current mechanical calibration efforts can be reduced by better distance surveying and installments of more rotors

Thanks And Questions?