Gravitational wave astronomy

Jess McIver GWANW student workshop June 28, 2021

Astronomy with light

Electromagnetic Wave Windows

X-Ray

Optical

Radio

Gravitational Wave Periods

Milliseconds	Minutes to Hours	Years to Decades	Billions of Years
LIGO/Virgo	LISA	Pulsar timing	CMB polarization

gravitational waves a new view of the universe

NASA

Independent measurement of Hubble constant

Insight into the nature of highly dense matter

Novel tests of general relativity

Census of stellar remnants across cosmic time

gravitational Waves a new view of the universe

Newton's Gravity

Einstein's Gravity: General Relativity

Matter tells spacetime how to curve Spacetime tells matter how to move John Wheeler

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

Some of Einstein's predictions

Gravity bends light

Black holes

Some of Einstein's predictions

Gravity bends light

Apparent position of a distant star when its light passes close to the sun

> Light is "bent" by the strong y gravitational field of the sun

Apparent displacement of star's position

Distant Star The New York Times.

The New York Times.

LIGHTS ALL ASKEW IN THE HEAVENS

EINSTEIN THEORY TRIUMPHS

Stars Not Where They Seemed or Were Calculated to be, but Nobody Need Worry.

S. Brunier / ESO

Measured by Eddington in 1919 during a total solar eclipse!

Deflected

Gravitational waves

 $h_{ij}(t) \propto \frac{G}{c^4 r} \frac{d^2 I_{ij}}{dt^2}$

Ripples in the fabric of spacetime generated by the acceleration of matter

NASA

Indirect evidence of gravitational waves

-10

Hulse-Taylor Binary Pulsar Won the Nobel Prize in Physics in 1993!

A binary black hole coalescence

Gravitational wave strain

Induced spacetime strain h(t) $\frac{G}{c^4r} \frac{d^2 I_{ij}}{dt^2}$

Measured spacetime strain h(t)

$$\frac{\Delta L}{L}$$

Movie: Carl Rodriguez

Gravitational wave propagation

Gravitational wave propagation

Observing GWs with interferometry

LIGO DCC P1500072

Detector network in O3

Searching for signals with matched filtering

Slide adapted from S. Caudill and M. Cabero Mueller

B. P. Abbott et al. Phys. Rev. X (2016)

Searching for signals with matched filtering

Slide adapted from S. Caudill

$$\rho^{2}(t) = \left[\langle s | h_{c} \rangle^{2}(t) + \langle s | h_{s} \rangle^{2}(t) \right]$$

$$\langle s|h\rangle = 4 \operatorname{Re} \int_0^\infty \frac{\tilde{s}(f)\tilde{h}^*(f)}{S_n(f)} e^{2\pi i f t} df$$

B. P. Abbott et al. Phys. Rev. X (2016)

Inferring mass and distance

Bayesian inference of source properties

d = h + n. \frown Data model d = signal (through lens of detector network) h + detector noise n

$$p(d|H_N, S_n(f)) = \exp \sum_i \left[-\frac{2|\tilde{d}_i|^2}{TS_n(f_i)} - \frac{1}{2}\log(\pi TS_n(f_i)/2) \right]$$

Likelihood: expect the residual of d-h to be consistent with Gaussian noise

Sky localization with GWs

Discovery of an optical counterpart

D. Coulter et al. 2017 arXiv 1710.05452 Image: 1M2H/UC Santa Cruz and Carnegie Observatories/Ryan Foley

The first multi-messenger discovery with GWs

NASA/Goddard Space Flight Center/CI Lab

Cosmology with GWs

B.P. Abbott et al. Nature (2017)

The GW Orrery: what we've observed

BH masses from the first half of O3

April 2019 - March 2020: Advanced LIGO and Advanced Virgo's third observing run (O3)

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GWs and the 'stellar graveyard'

Known compact object masses vs. estimated distance

GWTC-2: estimating source properties Results from LIGO-Virgo O3a: April-October 2019

R Abbott et al. arXiv 2010.14527 (2020)

Kai Staats

Advanced LIGO noise

Made with ligoDV web: <u>https://ldvw.ligo.caltech.edu/ldvw/view</u>

GW detector sensitivity

BNS inspiral range = given the PSD of the (average) noise, the distance at which we'd detect a 1.4-1.4 M_sol BNS with an SNR of 8, averaged over orientation and sky position angles

GW detector data: non-stationarity

The LIGO summary pages

GW detector data: non-stationarity

The LIGO summary pages

Key question: what drives non-stationarity?

The LIGO summary pages

LIGO-Virgo candidate events over time

McIver and Shoemaker, in prep.
Roadmap to aLIGO design and A+

Up to **1 signal/ day** at design sensitivity!

arXiv 1304.0670

Reaching design sensitivity

arXiv 1304.0670

S. Fairhurst 38

What else might we detect with current detectors?

McIver and Shoemaker, CP 2021

Future prospects for terrestrial gravitational wave astronomy

Einstein telescope

Source: http://www.et-gw.eu

Cosmic Explorer

m

Source: cosmicexplorer.org

Slide by G. Losurdo

45

Beyond terrestrial detectors

The LISA mission

LISA discovery space

LISA core team + consortium - 2017

Pulsar Timing Arrays

An International Radio Telescope Effort

An International Radio Telescope Effort

How do SMBHs get close enough to merge?

S. Burke Spolaor

IPTA detection prospects

Future prospects: multi-messenger astronomy

If we have time: Intro to GW detector data

What does GW detector data look like?

What's in a GW data file?

meta: Meta-data for the file. This is **basic information** such as the GPS times covered, which instrument, etc.

strain: Strain data from the interferometer. This is "the data", the **main measurement of spacetime strain** recorded by the LIGO detectors.

quality: A 1 Hz time series describing the **data quality** for each second of data.

h(t) **sampling rate** for LIGO detectors: 16384 Hz Open data: 4096 Hz and 16384 Hz

Why do we care about sampling rate, f_s ?

Discrete Time Samples

Discrete Time Samples

Discrete Time Samples

Nyquist Frequency

- Nyquist Frequency = $\frac{f_s}{2}$
- Data can only accurately represent frequency content below the Nyquist frequency
- Higher frequency signals will be lost or "aliased" to lower frequencies

Introduction to GWpy

A python package for gravitational-wave astrophysics

https://gwpy.github.io

Heavily dependent on <u>numpy</u>, <u>scipy</u>, <u>astropy</u>, <u>matplotlib</u>

Provides intuitive object-orientated methods to access GW detector data, process, and visualize them

Not specific to GW data other than data access routines

GWpy Quickstart

Import the class that represents the data you want to study

>>> from gwpy.timeseries import TimeSeries

Fetch some open data from the OSC

>>> data = TimeSeries.fetch_open_data('L1', 'Sep 14 2015 09:50:29', 'Sep 14 2015 09:51:01')

Make a plot

>>> plot = data.plot()

Display the plot

>>> plot.show()

Time domain

Time domain - Frequency domain

The Fourier Series

Any function can be represented as a sum of sines and cosines (with some coefficients that can also be functions).

$$f\left(x
ight)=\sum_{n=0}^{\infty}A_{n}\cos\Bigl(rac{n\,\pi x}{L}\Bigr)+\sum_{n=1}^{\infty}B_{n}\sin\Bigl(rac{n\,\pi x}{L}\Bigr)$$

The Fourier Transform

When we transform our function or time (or space) into the "frequency domain", we are **projecting f(x) onto an orthogonal basis of sines and cosines**.

Fourier transform

$$\widetilde{x}(f) = \int_{-\infty}^{\infty} dt \, x(t) e^{-i2\pi ft}$$

The Fourier Transform

When we transform our function or time (or space) into the "frequency domain", we are **projecting f(x) onto an orthogonal basis of sines and cosines**.

Fourier transform $\widetilde{x}(f) = \int_{-\infty}^{\infty} dt \, x(t) e^{-i2\pi f t}$

Inverse Fourier transform $x(t) = \int_{-\infty}^{\infty} df \ \widetilde{x}(f) e^{i2\pi f t}$

Another way to think about it: when we take a Fourier transform we are decomposing the function into its component frequencies.

How would you describe this function?

Time Domain

Frequency Domain

h(t) – Position as a function of time

h(t) = 3 * sin(2*pi*120*t) + 2 * sin(2*pi*350*t) + 1.5* sin(2*pi*720*t)

H(f) – Amplitude as a function of frequency

|H(120 Hz)| = 3|H(350 Hz)| = 2 |H(720 Hz)| = 1.5 H(f) = 0 otherwise

Fourier Transform

Power Spectral Density

Parseval's theorem:

$$\int_{-\infty}^{\infty} dt \, |x(t)|^2 = \int_{-\infty}^{\infty} df \, |\tilde{x}(f)|^2$$

 \Rightarrow Total energy in the data can be calculated in either time domain or frequency domain

Units:

- $$\begin{split} |\widetilde{x}(f)|^2 & \text{Energy spectral density} \\ & \text{(normalize by 1/T to get power)} \\ & \text{Signal energy per unit frequency (per Hz)} \end{split}$$
- $|\widetilde{x}(f)|^{\sharp} \propto \text{Amplitude spectral density}$ (sqrt of power for each discrete frequency) Signal amplitude per unit frequency (per sqrt Hz)
LIGO data in time and frequency

Made with GWpy by Duncan Macleod. Code: <u>https://git.io/gwpy-ligo-scattering-animation</u> 0.5 second FFT; 5 averages covering 1.5 seconds; 50% overlap

Time-frequency spectrogram

The Q transform

S. Chatterji et al. CQG (2010) Images: McIver

The Q transform

S. Chatterji et al. CQG (2010) Images: McIver

The Q transform

Time-frequency spectrograms

LIGO-Hanford h(t)

Extra slides

LIGO/Caltech

Major result from O3: GW190521

85, 66 solar mass BBH: First intermediate mass black hole detection!

Mass of final BH unequivocally >100 M_sol ~8 solar masses of energy released in GWs!

Primary mass in PISN mass gap! 0.32% probability below 65 M_sol

arxiv 2009.01190

A+ by the mid 2020s

- Frequency-dependent light squeezing
- 300m filter cavity

- Improved coatings
- Bigger beam splitter, improved suspensions

Detector range

- Thousands of high SNR events
- Precise tests of GR in highly curve spacetime
- New GW sources at high frequencies, including CCSNe
- All stellar-mass BBH mergers in the visible Universe!

Einstein telescope

Einstein telescope

Three detectors...Six interferometers

85

The range of next generation GW detectors

Galaxy formation and evolution

LISA will be able to localize massive BH sources to a few arcminutes at z=1!

S. McWilliams et al. 2011 arXiv 1104.5650 LISA will be able to measure massive BH distance with less than 10% error at z=4!

E. Berti et al. 2005. arXiv 0504017

Hubble Interacting Galaxy ESO 593-8. Image: hubblesite.org

"Worst offender" glitches

Davis et al. CQG 2021

"Worst offender" glitches

Blips

- Few known witnesses
- Shared time-frequency morphology with high mass CBC signals

Extremely loud

- Much more common in O3 than in O2 for LIGO detectors
- Few clear witnesses
- Pollute PSD estimation

"Worst offender" glitches

Slow scattering

- Well understood witnesses and coupling
- Still difficult/impractical to veto because they are at times so frequent

Fast scattering

- Modulated fast scattering
- Troublesome for lower mass CBC templates
- Most comment LIGO-Livingston: thought to be understood for O3

Davis et al. CQG 2021

Estimating the PSD

Step O: Take a **Fast Fourier Transform (FFT)**, which is any algorithm useful for quickly estimating the **Discrete Fourier Transform** that describes a **discrete time series**.

$$egin{aligned} X_k &= \sum_{n=0}^{N-1} x_n \cdot e^{-rac{i2\pi}{N}kn} \ &= \sum_{n=0}^{N-1} x_n \cdot [\cos(2\pi kn/N) - i \cdot \sin(2\pi kn/N)], \end{aligned}$$

Need to shift our thinking to discretized data; frequency bins instead of continuous smooth sinusoids

Estimating the PSD

Step 1: Apply a window to your data (if it's linear! as a time series is) to prevent **spectral leakage** from the assumption the signal is periodic.

Estimating the PSD

A single windowed FFT is unbiased (i.e. will give the correct mean PSD), but has **high variance**.

Solution: average several FFTs!

Step 2: Divide your data into shorter time segments; take a windowed FFT of each, and average these together. *Note you lose some frequency resolution this way.*

Welch's method averages the mean value for each frequency bin across FFTs, with some overlap in the data analyzed.

Averaging FFTs

Signal processing with GWpy

GWpy provides **FFT wrappers** to estimate frequency-domain content of data:

FFT length (s) Verlap between averages (s)

Can also specify: Time window (default = Hanning) Averaging method (default = Welch)

The LISA mission

Beyond terrestrial detectors

The significance of a detected event

Dynamics of dead stars

Northwestern Visualization, Carl Rodriguez

Seismic isolation: active isolation

LIGO/Caltech

Advanced LIGO optics

M. Heintze

The Advanced LIGO input laser

M. Heintze

How sensitive is the LIGO experiment?

