Low-noise Nonlinear Cavity for Cryogenic Interferometers

Presented by: Rahaf Youssef •

Motivation

Fused Silica Mirror Image Credits:

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=141

What needs to change?

Crystalline silicon test masses held at 123 K. Laser wavelength (> 1500 nm).

R. X. Adhikari et al. "A Cryogenic Silicon Interferometer for Gravitational-wave Detection". July

Degenerate Optical **Parametric** Oscillator (DOPO)

Degenerate Optical Parametric Oscillator

Figure 1. Boyd, Robert (2008). P 109

Goals

- 1) Design an experiment to measure DOPO's frequency noise.
- 2) Understand noise injections in the frequency conversion process.
- 3) Developing noise mitigation techniques.

Degenerate Optical Parametric Oscillator

 $\frac{2\pi}{\Lambda}$

• Momentum

1 Conservation:

$$\Delta \mathbf{k} = \mathbf{K}_{\mathrm{p}} - (\mathbf{k}_{\mathrm{i}} + \mathbf{k}_{\mathrm{s}}) -$$

Energy Conservation:

 $ω_p$ = ($ω_i$ + $ω_s$)

Figure 2. Boyd, Robert (2008). P 109

Dispersion Near Degeneracy

• Phase-matching condition:

 $\circ \Delta \mathbf{k} = \mathbf{0}$

• Near degeneracy: Figure 2. Boyd, Robert (2008). P 109 1. Assume $\omega_i = \frac{\omega_p}{2} - \Delta \omega$ and $\omega_s = \frac{\omega_p}{2} + \Delta \omega$. 2. Taylor expand around $\frac{\omega_p}{2}$ to get $k(\omega_1) - 2k(\frac{\omega_1}{2}) + \beta \Delta \omega^2 - \frac{2\pi}{\Lambda(T)} = 0$

Dispersion Near Degeneracy

3. Finally, we find that
$$\frac{\omega_p}{\omega_{2,s}} \pm \sqrt{\frac{2\pi}{\beta\Lambda(T)}} - \frac{\omega_p(n_p - n_s)}{\beta c}$$

BUT...
 $\Lambda(T) = \Lambda_0(1 + \alpha\Delta T)$ $n_{p,s} = n_z + x_1(T - 298) + x_2(T - 298)^2$
• n_z using Sellmeier equations.
• $X_{1,2}$: parabolic coefficients.

Aerie. Ady et al. "Temperature-dependant Dispersion Equations for KTiOPO₄ and KTiOASO₄". December 2003. Kato, Kiyoshi et al. "Sellmeier and thermo-optic dispersion formulas for KTP". 2002.

Constants

Quantity	Symbol	Value	Units
Pump frequency	ω_p	980×10^{14}	Hz
Signal and idler frequency	$\omega_{i,s}$	490×10^{14}	Hz
Nominal periodic poling value	Λ_0	38.85	μ m
Pump refractive index	n_p	1.82	_
Signal refractive index	n_s	1.80	_
Thermal expansion coefficient	α	6.7×10^{-6}	$\frac{m}{k}$
Anomalous dispersion	β	-108×10^{-30}	$\frac{s^2}{m}$
Speed of light	с	3×10^8	$\frac{\overline{m}}{s}$

Table 1. Temperature tuning constants

Aerie. Ady et al. "Temperature-dependant Dispersion Equations for KTiOPO₄ and KTiOASO₄". December 2003. Kato, Kiyoshi et al. "Sellmeier and thermo-optic dispersion formulas for KTP". 2002.

Refractiveindex.info

Temperature Tuning Curve

Figure 4. Temperature Tuning Curve

Experimental

Future Work

Future Work

- Measure DOPO's frequency noise.
- Develop noise

mitigation systems.

DOPO Setup

Acknowledgements

- Francisco Salces Carcoba, Anchal Gupta, and Rana Adhikari.
- National Science Foundation.
- LIGO Lab.
- LIGO SURF mentors and interns.

Dispersion Near Degeneracy

3. Since
$$k = \frac{n\omega}{c}$$
 we get $\frac{n_p\omega_p}{c} - \frac{n_s\omega_p}{c} + \beta\Delta\omega^2 - \frac{2\pi}{\Lambda(T)} = 0$
4. Finally, we find that $\frac{\omega_p}{\omega_{2,s}} \pm \sqrt{\frac{2\pi}{\beta\Lambda(T)} - \frac{\omega_p(n_p - n_s)}{\beta c}}$
BUT...
 $\Lambda(T) = \Lambda_0(1 + \alpha\Delta T)$ $n_{p,s} = n_z + x_1(T - 298) + x_2(T - 298)^2$
• n_z using Sellmeier equations.
• x_1 ; parabolic coefficients.

Aerie. Ady et al. "Temperature-dependant Dispersion Equations for KTiOPO₄ and KTiOASO₄". December 2003. Kato, Kiyoshi et al. "Sellmeier and thermo-optic dispersion formulas for KTP". 2002.

Noise Estimates

Noise Estimates

