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The traditional gravitational wave parameter estimation process relies on sequential estimation of
noise properties and binary parameters, which assumes the noise variance is perfectly known. Using
new capabilities of the BayesWave algorithm and recent developments in noise uncertainty modeling,
we simultaneously estimate the noise and compact binary parameters, marginalizing over uncertainty
in the noise. We compare the sequential estimation method and the marginalized method on real
GW events from GWTC-2 using both the wavelet- and template-based models in BayesWave. We
find that the recovered signals and posterior parameter distributions agree in median and width.
At current sensitivities, PSD uncertainty is a subdominant effect compared to other sources of

uncertainty.

I. INTRODUCTION

Gravitational wave (GW) data analysis requires mod-
els of both the genuine GW signal and the frequency-
dependent noise in the raw data. Accurate estimation
of black hole and neutron star properties from compact
binary coalescence (CBC) signals depends on the robust-
ness of both of these models [1]. While creating waveform
templates by numerically solving Einstein’s equations has
been the subject of many research operations over the
last decades [2], noise models have not been traditionally
given the same amount of attention.

The traditional parameter estimation (PE) process
uses sequential estimation of noise properties and binary
parameters. The random noise in GW detectors is char-
acterized by its power spectral density (PSD), S, (f), or
its frequency-dependent variance. The PSD is modeled
first, then given as a fixed input to LALInference (LI)
or its successor Bilby, the primary PE pipelines used by
the LIGO and Virgo collaboration [3][4]. LI and Bilby
are template-based GW searches that require a provided
model for the noise to whiten the data prior to evaluating
the likelihood function for the CBC parameters.

Such analyses of CBC signals depend on three assump-
tions about the noise properties: first, that the noise is
Gaussian; second, that it is stationary in time; and third,
that its frequency-dependent variance is perfectly known.
We discuss how these assumptions appear in the likeli-
hood function in Appendix A. Of particular relevance for
this study, the third is invoked in the use of a point es-
timate for the noise as input to the CBC PE pipeline.
However, in practice, all three assumptions are invalid
to some extent. Recent research in noise modeling has
sought to address these assumptions to increase accuracy
and prevent bias in PE.

The stationarity assumption, for instance, is addressed
in Chatziioannou et al. [5], which compares two methods
of estimating the noise PSD for use as a point estimate in
LI. First, they consider the “off-source” method, which
averages the PSD from many data segments around, but
not including, the data segment containing the signal [3].
They compare this to the “on-source” method, which

uses the BayesLine (BL) algorithm to estimate the PSD
with the same data segment that is used for PE [6]. BL is
integrated into the broader BayesWave (BW) algorithm,
a variable dimension, parameterized model to separate
transient GW signals from noise [1][7]. BL estimates the
PSD as a sum of splines and Lorentzians. By using the
same data segment for PE and noise modeling, the on-
source estimation method mitigates the amount of time
that the stationarity assumption must hold. Chatziioan-
nou et al. [5] found that the on-source PSD produced
whitened data more consistent with a Gaussian likeli-
hood and better recovered injection parameters.

In order to address the assumption that the noise vari-
ance is perfectly known, the noise uncertainty must be
marginalized over during PE. The BW algorithm is capa-
ble of employing BL to simultaneously marginalize over
the noise and the signal. Until recently, it could do so
only while modeling the GW signal using sine-Gaussian
wavelets; there was not yet a template-based algorithm
that did not require a fixed estimate of the noise. An
augmentation to the BW algorithm, described in detail
in Chatziioannou et al. [8] and discussed in Section ITA,
is a CBC template-based GW search. When used with
BL, it marginalizes over noise uncertainty in parameter
estimation. This method simultaneously mitigates the
assumptions of noise stationarity and known variance.

While the impact of the stationarity premise has been
thoroughly explored, we now seek to study the known
variance assumption. In this work, we expand on the
methods in Chatziioannou et al. [8], which tested the
model on simulated signals, to compare the PE results on
real GW events when using a fixed input PSD as opposed
to BL. In doing so, we test the effect of marginalizing over
the noise properties on real-data PE.

The rest of the paper is organized as follows. In Section
11, we describe the BW algorithm and models for the GW
signal available within it. In Section III, we discuss our
analyses on a set of events from GWTC-2 [9], considering
the waveform reconstructions as well as the parameter
posteriors. To further understand our real data results,
we then explore the impact of using a shifted PSD in
PE before mathematically considering the effect of PSD
marginalization. Finally, in Section IV we conclude.



II. METHODS
A. Algorithm Description

BayesWave is a Markov Chain Monte Carlo algorithm
that simultaneously models GW signals, detector noise,
and glitches. [1]{7]. For this work, we focus on the noise
and two GW signal models.

The noise model uses the BayesLine algorithm, fully
integrated into BW, to describe the PSD as the sum of
a broadband spline and Lorentzians for spectral lines [6].
The number and parameters of the spline control points
and Lorentzians are marginalized over.

The signal model finds astrophysical signals by search-
ing for coherent power between the detectors, which it
describes as the sum of Morlet-Gabor wavelets. The al-
gorithm is trans-dimensional, meaning the number and
morphology of the wavelets are not fixed a priori. Its flex-
ible approach enables it to find weakly modeled signals,
such as bursts, in addition to well-modeled events like
CBCs. While other models for the GW signal are now
available in BW, we keep the original names, so “signal
model” refers to the wavelet signal model.

The second model we employ is the CBC model, which
uses general relativity templates to model the signal. The
latest development of BayesWave, the CBC model is thor-
oughly described in Chatziioannou et al. [8]. The CBC
model marginalizing over noise in CBC parameter esti-
mation. For this work, we use the IMRPhenomD [10] wave-
form model for signal recovery.

Lastly, we use the glitch cleaning phase to obtain the
PSDs that we use for the fixed PSD analyses. The clean-
ing phase serves a dual purpose: first, it models and re-
moves excess power outside of a given window. Second,
it estimates the PSD. When run on its own, the cleaning
phase output can be used as the fixed estimate for a tra-
ditional PE analysis. When run as a preprocessing step
before the CBC or signal model, the output is used as
the starting point for the BL sampler.

B. Analyses on Detected GW Events

We perform four primary analyses on each GW event.
To conduct the traditional fixed PSD analyses, we first
run the cleaning phase to obtain a PSD estimate. We
take the median output PSD as the input to signal and
CBC model runs, described from here on as “signal +
fixed” and “CBC + fixed” analyses. We then run both
models using BL, which we call “signal + BL” and “CBC
+ BL” analyses, to find the signal while marginalizing
over noise properties. Finally, we compare the two signal
model and two CBC model analyses.

We also check results within each method for consis-
tency when using, versus not using, a heterodyned like-
lihood, a method that speeds up the computation de-
scribed in Cornish [11], and compare results when using
fixed PSDs offset by a constant.

III. ANALYSES ON DETECTED GW EVENTS

We run each analysis on several events from GWTC-
2 [9], chosen to cover the range of masses and SNRs of
the events observed in O1-O3a. The chosen events and
their published SNRs, masses in the source frame, and
distances are listed in Table I. The run parameters that
we use for each event are in Table II.

Event SNR M /Mg mi/Mg m2/Mg Distance (Mpc)
GW150914 24.2 28.6 35.6 30.6 440
GW151226 13.1 8.9 13.7 7.7 450
GW170104 13 214 30.8 20.0 990
GW170814 15.9 24.1 30.6 25.2 600
GW190412 18.9 13.3 30.1 8.3 740
GW190521 14.2 69.2 95.3 69.0 3920

TABLE I: The GW events we analyzed from GWTC-2
and their median parameters, as published in [12] and

[9].
Event flow Segment Sampling

length (s) rate (Hz)
GW150914 16 4 2048
GW151226 16 8 2048
GW170104 16 4 2048
GW170814 16 4 2048
GW190412 16 4 1024
GW190521 16 4 1024

TABLE II: Run settings for each event we analyzed.

A. Recovered Waveforms

Figures 1 and 2 show the results of the four analyses
in the time and frequency domains for GW150914. The
former compares the signal model results while the latter
compares those of the CBC model.

We first observe that the signal and CBC models agree
in terms of waveform shape, power, and cutoff frequency.
We see this with each event we analyzed, further con-
firming the established result that GR templates agree
with the weakly modeled wavelet method [13]. The sig-
nal model analyses have much greater uncertainty, as an-
ticipated.

Within each model, the recovered waveforms for the
fixed and BL methods agree in median and uncertainty;
despite the BL method adding uncertainty to the anal-
ysis, the methods have comparable error. The signal
model recovers slightly more power and SNR when used
with BL, which can be seen in the time-domain plot. For
every GW event we analyze, there is this close agree-
ment between the recovered waveforms for the fixed and
BL methods in both models. We show the direct com-
parison for GW150914 as a representative example.
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FIG. 1: Top row: Time-domain waveform comparison
between fixed PSD (green) and BL PSD (orange)
methods for GW150914 in Hanford (left) and
Livingston (right) using the signal model. Time is with
respect to GPS 1126259462.4. Bottom row:
Frequency-domain waveform and PSD comparison.
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FIG. 2: Same as Fig. 1, but for the CBC model.

B. Parameter Posteriors

We compare the parameter posterior distributions of
the two methods for all events. We focus on chirp mass
and effective spin for the intrinsic parameters and dis-
tance for extrinsic parameters. Figure 3 compares the
parameter posteriors for detector-frame chirp mass, ef-
fective spin, and luminosity distance for GW150914. The
medians are overplotted and labeled with the 90% confi-
dence intervals. Although the CBC+fixed posteriors for
chirp mass and spin are slightly shifted and irregular in
shape, the medians agree to within uncertainty and the
90% widths are comparable.

Figure 4 shows the detector-frame chirp mass posteri-
ors for all events we analyzed with their medians over-
plotted. The medians slightly differ for GW150914 and
GW170104, but to well within the uncertainty. Addition-

ally, the posterior widths are dissimilar for GW170814,
but agree for all other events. Overall, the distributions
agree well in shape and spread. We find no systematic
difference between the chirp mass posterior medians or
uncertainties between the two methods. The spin and
distance posteriors show similar trends and we have the
same conclusion.

That the posterior widths of the fixed and BL methods
agree is non-intuitive; by adding additional uncertainty
from the PSD, one would expect the BL posterior to have
greater uncertainty. In the case of GW170814, the event
for which the CBC+BL posterior is significantly differ-
ent in width than the CBC+fixed posterior, the PSD
uncertainty is not notably higher than the other events,
suggesting the observed widening is not attributable to
additional PSD error.

C. Shifted PSD

To understand why posterior uncertainty does not in-
crease when we marginalize over PSD uncertainty, we
first look at the posterior width when we use a fixed PSD
that is shifted. Overestimation of the noise variance leads
to underestimation of the SNR, and as a consequence,
overestimation of posterior uncertainty. Similarly, if one
is falsely confident by underestimating the PSD, the pos-
teriors are incorrectly narrow.

To see this effect in the data, we run CBC+fixed PE for
GW159014 with the median PSD from BL—the standard
one used—as well as the low and high 90% confidence in-
terval PSDs. Note that these runs are conducted with
fiow = 32 and no heterodyned likelihood, while the other
fixed PSD runs presented here used fiow = 16 and a het-
erodyned likelihood. The posteriors are plotted in Fig-
ure 5 and show the expected posterior broadening with
a higher PSD. The shift in the medians is likely sam-
pling error and insignificant. Figure 5 also plots the M
90% width as a function of ASD height, given as frac-
tional difference between the ASD and the median at
100 Hz. With three points, we can draw limited con-
clusions from the plot, but can see the increasing trend.
Xeft, the second-best measured parameter after M, shows
similar widening, but distance does not. This is likely be-
cause distance is much less well-measured, with ~ 100%
fractional uncertainty, so the impact of PSD height on
posterior width is outweighed by other effects.

D. PSD marginalization

When using BL to marginalize over PSD uncertainty,
each MCMC step computes an estimate for the PSD,
which may have different spline and Lorentzian parame-
ters, and likely a different height, than the “true” PSD.
BW then samples the intrinsic CBC parameters using
this PSD estimate. Because the PSD height impacts
the posterior width, at each step, one effectively samples
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FIG. 3: GW159014 posterior distributions for M, x, and distance using BL (orange) and a fixed PSD (green). The
medians are overplotted. Uncertainties are quoted at the 90% confidence level.
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FIG. 4: Detector-frame chirp mass posterior comparison between BL and fixed PSD methods for real events.

from a distribution of a width that is impacted by the
PSD height. The posterior that results from marginaliz-
ing over PSD parameters will be a collection of samples
from posteriors with different standard deviations, which
is comparable to a normal distribution integrated over a
range of standard deviations. The difference between the
posteriors that result from using a fixed PSD versus BL
will be similar to the difference between a normal distri-
bution and one integrated over a range:

1 €
2 J_.

N(0,(1+z)o)dx — N(0,0) (1)

Figure 6 plots Eqn. 1 for # = 0, 0 = 1, and several
values of . The difference between the two distributions

peaks at their mean and goes as £*. Because the change
in width is proportional to €%, for small PSD uncertainty,
which is analogous to a small € value, there will be little
difference between the posteriors. As demonstrated in
Figure 5, typical BL uncertainty at current sensitivities
results in a relatively narrow range of posterior widths.
The £* approximation gives that the posterior marginal-
ized over PSD uncertainty will agree with fixed PSD pos-
terior in width to well within sampling error.
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FIG. 5: Top: M posteriors for GW150914 using the
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IV. CONCLUSION

We study the impact of the known noise variance as-
sumption in real-data GW PE by comparing the posteri-
ors when noise properties are marginalized over to those
when a point estimate is used for the noise. We find that
the BL and fixed PSD methods recover nearly identical

waveforms for both the signal and CBC models. For the
CBC model analyses, the parameter posterior medians
for chirp mass, distance, and effective spin agree to well
within uncertainty, confirming the expectation that using
a fixed PSD does not systematically bias the posterior.
Moreover, the BL method does not produce wider pos-
teriors; the 90% width is comparable to the fixed PSD
method in all instances. This is attributable to the rela-
tively low uncertainty in the PSD.

Our results show that current analyses are not under-
estimating error in binary parameters by not accounting
for uncertainty in the PSD. At current sensitivities, PSD
uncertainty is a subdominant effect in posterior estima-
tion compared to other sources of uncertainty.
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Appendix A: Likelihood Function

A detailed derivation of the GW PE likelihood function
is given in Veitch et al. [3]. We summarize the function
here to highlight where the assumptions about the noise
appear. GW PE assumes that data from GW detectors,
d, is the sum of a coherent signal h between detectors
and uncorrelated random noise n: d = h 4+ n. For an
accurate signal model i/, the residual data r = d — A’
should follow the same distribution as the noise. The
likelihood function £(d|h') for GW PE, the probability
density of measuring data d if the true signal is h’, can
be expressed in terms of these residuals. Assuming Gaus-
sian noise allows for describing the residuals with a nor-
mal distribution. Further assuming stationarity over the
time period of interest, the noise covariance reduces to a
diagonal matrix in the frequency domain, which enables
simplifying the likelihood function to

InL(d|h) = —2 Z T;L + const,

which explicitly depends on S,,(f). GW PE depends on
its likelihood function, which in turn depends on the va-
lidity of these three assumptions, hence the recent work
to measure and mitigate their effects.
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