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1 Introduction

In 1916, Albert Einstein theorized “ripples in space-time” known as gravitational waves in
his paper on general relativity. It is well understood from this publication that Einstein’s
definition of gravity differed from Issac Newton’s in that Einstein said that gravity is space-
time curvature as opposed to Newton stating that gravity is an attractive force or rather an
interaction between two objects in only space. Further deviating from the Newtonian gravity
explanation, Einstein proposed that gravity was actually the result of a wave of spacetime
curvature propagating at the speed of light through not only the three dimensions of space
as we know it, but through time as well. These waves would only be caused by the motion
of massive astrophysical objects like colliding black holes, supernovae, and colliding neutron
stars.

Although it might have been outlandish when it was first proposed and even shook the
foundation of modern physics at the time, general relativity mathematics has proven to be
correct with its role in increasing the precision of global positioning systems. It was not
until an effort designed to detect these waves by the Laser Interferometer Gravitational-
Wave Observatory (LIGO), which set out to find evidence of their existence, that Einstein’s
theoretical predictions would be visually observed and recorded. The first gravitational wave
event to be detected and measured was in the year 2015 as a result of the observation of two
LIGO detectors during a merger of a pair of black holes into a single black hole. Since that
historic event, LIGO has detected 49 more accounts of gravitational waves, some because of
the collision of black holes like the first detection and others as a result of supernovae and
colliding neutron stars. This effort to detect gravitational waves is no where near ending as
work is being done on the current detectors to increase the rate and efficiency of detection
by reducing surrounding unwanted noise.

LIGO has achieved a large feat by managing to detect gravitational waves at the sites of
extreme astrophysical phenomena of the universe; however, astrophysics is not the only ben-
efiter of these discoveries. Optical physics has been further advanced as a result. Although
these extraordinary optical instruments have assisted with the numerous detections, they
still have limitations that can further be improved. There are current systems in place to
reduce these noise limitations and one of them is known as the thermal compensation system
(TCS). As seen by the layout of Advanced LIGO in Figure 2 there are two actuators that
“serve to correct dynamic changes in the ITM and ETM surface curvatures and substrate
lenses and are also used to remove static lenses in the ITM substrates[...]” The limitation
that exists with this system is that “one cannot actuate with the TCS actuators to affect
the SRC mode without also affecting the PRC mode.” Furthermore, the true spatial modes
of the different interferometer cavities are the hidden state of the system. The hidden state
is the result of having measurements and diagnostic signals that are sensitive to the cavity
modes but are not directly measured by the system. In an effort to mitigate this issue and
gain information about the hidden states, the Kalman filter will be implemented to infer the
hidden state.
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Figure 1: Thermal compensation system with a pair of actuators

Figure 2: Kalman Filter used as a prediction algorithm in radar systems
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Figure 3: Newtons Equations of Motions in three dimensions

2 Kalman Filter

Kalman filters are not a new invention and in fact have been “the most widely used prediction
algorithm”. The filter essentially takes in information about a current state and then predicts
the next state based on this initial state. The Kalman filter’s role in “relatively simple state
space estimation” has been applied to other physical systems. For example, in radar systems
as shown in Figure 1, the use of Kalman filters can increase the accuracy in which an aircraft’s
position and velocity can be monitored. In order to use a Kalman filter, the function must
either be linear or differentiable. Relatively simple mathematical differentiable functions that
may be used in such a radar system are shown in Figure 3 where “the target parameters
[x, y, z, vx, vy, vz, ax, ay, az] are called a System State.” Having the system of equations
from Figure 3 which is also known as the “Dynamic Model” along with the current system
state, an estimation about a future state can be predicted within a relative margin of error.
It is well known that in the real world, these Newtonian equations of motion are not the
only thing dictating an object’s behavior as there are external factors that contribute to the
system state that affect its motion. To make an accurate prediction of a future state, it is
necessary that these external factors, or what is referred to as noise in our case, be taken
into account. The plan is to implement this same technology in gravitational wave detection
systems to solve the aforementioned mystery of the hidden state.

The Kalman filter’s implementation is meant to be able to “optimally estimate the current
state of the [LIGO] interferometer”. Specifically, an extended Kalman filter with “extended”
referring “to the fact that the Kalman filter contains non-linear state propagation functions”,
will be implemented for the sole purpose of mode-matching an input laser beam. The electric
field of an optical beam is represented as follows where unm describes the “spatial properties
of the beam”, “ajnm as complex amplitude factors, and ωj is... the angular frequency and
kj = ωj/c”. The intensity of this beam is unlike a plane wave and would actually resemble
an intensity distribution. The goal is to have the curvature of the beam’s wavefront match
the curvature of the optical cavity. Figure 4

E(t, x, y, z) = ΣjΣn,majnmunm(x, y, z)exp(i(ωjt− kjz)) (1)

Utilizing this equation of the electric field of a Gaussian laser beam, one can proceed
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Figure 4: Laser beam front mode-matched with optical cavity

with calculating the mode matching overlap function. For the purpose of demonstrating
this method of calculation, one can observe the simple one arm two mirror cavity of the
Michelson interferometer setup on LIGO’s system. The radii of curvature of the ITM and
ETM are 1935 and 2024 meters respectively, the length of the arm is four kilometers, and
the wavelength of the optical cavity is 1064 nanometers. The size of the beam waist and
its position on the optical axis are necessary parameters to obtain a solution to the mode
matching overlap function and is calculated with the following system of equations relating
them: {

RI = −z0 +
z2R
−z0

RE = L− z0 +
z2R
L−z0

(2)

where zR =
π×w2

0

λ
is defined as the Rayleigh range, RI and RE is the input and exit test

mass respectively, L is the length of the interferometer arm, and z0 the beam waist position.
For mathematical convenience, we solve for z0, the beam waist position, using this system
of equations. Using algebraic manipulation to isolate zR we get two equations that both
contain z0: {

−z0RI + z20 = −z2R
RE(L− z0) − (L− z0)

2 = z2R
(3)

Using the elimination method, we are able to come up with the following relation and
numerical value in units of meters:

z0 =
−REL+ L2

−RI −RE + 2L
(4)

z0 = 1840.5m (5)

After obtaining that result, the numerical value can be substituted in the same equation
above that was previously used to solve for z0. Doing so, gives the beam waist size

w0 ≈ 0.03 (6)

The mode matching function is set up as the following integral:∫ 2π

0

∫ ∞
0

EU =

∫ 2π

0

∫ ∞
0

√
2

π

1

w0

e
− r
αw0 e

− r
w0 rdrdθ (7)
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Assuming that the mode of the incoming laser beam is the same as the mode of the optical
cavity, we are allowed to make α = 1. Evaluating this normalized integral we get that the
amplitude of the incoming wave should equal 1.

Similar to having the dynamic model along with the current state in the general use of a
Kalman filter, “knowledge of the input beam and TEM00 mode combined with our model
engine (state-propagation function) allows [...] an a priori estimate of the mode-matching.”
The mode matching itself will be measured simultaneously with some uncertainty. The
ideal estimate will be a combination of this direct mode matching measurement with the
prediction and the optimal weight of the combination determined by the Kalman filter.

Figure 5: Input laser beam injected into a “TEM00 eigenmode” and the output mode-match
is measured

Figure 6: More complex Kalman filter application

3 Objective

The purpose of the project becomes apparent when examining the ability of the Kalman
filter to fulfill the outstanding requirement of LIGO detectors. Following the relatively
simple description of mode-matching with one laser beam in Figure 5, one can see that
the plan is to eventually scale the potential of the Kalman filter up to a more complicated
system like the one in Figure 6. Similar, yet more intricate compared to the structure of
combining the measurements of the mode-matching and the prediction that is to be weighted
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by the Kalman filter, this more complex system will essentially take in multiple uncertain
measurements.

4 Approach

The Kalman filter will be implemented in Python and will utilize the Finesse/PyKat sim-
ulation package for optical modeling. The first couple of weeks have been spent learning
the prerequisite knowledge of Gaussian laser beams, which included the beam waist, also
known as the minimum distance of the beam away from the optical axis, and the beam
waist’s position on the optical axis. The third week will be spent getting comfortable with
the Finesse 2.1 and PyKat library packages. In addition to that, the third and fourth weeks
will be used to implement the Kalman filter program on a simple system of optical cavities.
After the successful implementation and testing of the software on this simple system, the
program will be put to the test with real data from LIGO detectors. The program will then
be tweaked to its final version until the eigenmode matching is favorable.
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