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1 Introduction

This document describes the extraction of the force amplitudes injected with
the Newtonian calibrator [1] using Least-Squares Spectral Analysis (LSSA). For
a detailed description of LSSA see [2].

The NCal injects forces at two specific frequencies: twice the rotation fre-
quency of the rotor (2f) and three times the rotation frequency (3f). The goal
of this analysis is to extract the force amplitude at each frequency. This can
then be compared to the expected force amplitude to yield a calibration of the
interferometer at both frequencies.

2 Least-Squares Fitting

The interferometer measures strain, h, at discrete, evenly-spaced time, ti. We
will focus on just the stretch of time when the NCal was injecting forces giving
us a strain vector with n measurements:

h(ti) = [h1, h2, h3, ...hn] (1)

We want to fit this to a discrete set of frequencies containing the sine and
cosine at both 2f and 3f . The model we will fit to is then:

ĥ =a2 cos(2π 2f t) + b2 sin(2π 2f t) (2)

+ a3 cos(2π 3f t) + b3 sin(2π 2f t)

Since we only care about the values of this function at discrete times, ti, this
can be recast into vector notation as:

ĥ = Xβ (3)

with
β = [a2, b2, a3, b3]T (4)

X = [cos(2π 2f ti), sin(2π 2f ti), cos(2π 3f ti), sin(2π 3f ti)]
T (5)
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We call the columns of X the basis functions. Explicitly writing out the
dimensions of these matrices gives:

y = n× 1 (6)

β = 4 × 1 (7)

X = n× 4 (8)

Using linear-least squares fitting, we minimize the residual sum-of-squares,
R,with respect to β :

R = (y −Xβ)2 (9)

R = (y −Xβ)T (y −Xβ) (10)

At the minimum:
∂R

∂β
= 0 (11)

Evaluating the derivative given us:

0 = −2XT (y −Xβ) (12)

Rearranging:
β = (XTX)−1XT y (13)

Note that this simply one line of matrix multiplication and guarantees that
the frequencies are fit to are exactly the frequencies of interest.

Since Equation 13 is linear, then the uncertainties on the β values, σβ , are
directly related to the uncertainties of the strain measurements, σh:

σ2
β = (XTX)−1σ2

h (14)

3 Cut-Based Analysis

We don’t necessarily know the uncertainties of the strain measurements so we
can’t derive the uncertainties on the fit parameters, β. To get around this we
split our data up into cuts and fit each cut separately. To satisfy orthogonality
conditions [2], the cuts must an integer number of periods for both the 2f and
3f frequencies.

We achieve this by using a cut length of 20 1f -periods. In one 1f -period there
are two 2f -periods and three 3f -periods. The number of periods to use is a trade
off between having enough data points per cut to get a quality fit to the data and
having enough cuts to give a good description of the underlying distribution. We
chose to use 20 periods but the results do not change appreciable with different
choices.

If the fit parameter distribution follows a Gaussian distribution then we can
use standard equations to extract the mean and the standard deviation of the
mean:
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α2 =
1

N

∑
j

a2,j (15)

σ2
α2

=
σ2
a

N
(16)

where a2,j is the cosine amplitude for the 2f frequency from the jth cut, α2 is
the mean of the collection of cosine amplitudes for the 2f frequency, and N is
the number of cuts.

The mean strain amplitude for the 2f , A2, is then calculated using:

A2 =
√
α2
2 + β2

2 (17)

where α2 and β2 are respectively the mean of the collection of cosine and sine
amplitudes for the 2f frequency. And similarly the strain amplitude at the 3f ,
A3,:

A3 =
√
α2
3 + β2

3 (18)

The uncertainty of the strain amplitudes are then calculated using:

σ2
i =

1

Ai
(α2
i σ

2
αi

+ β2
i σ

2
βi

) (19)

where i indicates either the 2f or 3f amplitude.
Although not used in the current version of the NCal, the phase, φi, can be

found via:
φi = arctan(βi/αi) (20)

4 Conversion to Force

Since we can predict the force that the NCal causes, we need to convert the
strain amplitudes to force amplitudes using the following:

Fi(f) = L Ai(f)/S(f) (21)

where f is frequency, Ai is the strain amplitude for the i f frequency, L is the
length of the arm, and S is the force-to-displacement response of the suspension
system.

The full force-to-displacement response functions[3] for both forces on the
penultimate mass (PUM) and the test mass (TST) are shown in Figure 1. At
the frequencies of the NCal injections (10-30 Hz), the response function is well
approximated by S(f) = −1/Mω2. So we simplify Equation 21 to:

Fi(f) = (2π 2f)2M L Ai(f) (22)
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Figure 1: Force to displacement transfer functions for the ETMX suspensions.[3]

5 Measurements

During O3, we injected forces with the NCal at a variety of rotation rates. We
ran the above calculations for each injection separately which yielded the mea-
surements shown in Table 1. The code used for this extraction can be found at
https://git.ligo.org/laurence.datrier/ncal-codebase/-/tree/master/Measurements

1f (Hz) 2f (Hz) F2 (pN) 3f (Hz) F3 (pN)

4.16 8.32 – 12.45 8.96±0.31

5.17 10.34 16.90±2.33
±13.79% 15.51 9.16±0.45

±4.91%

7.80 15.60 19.59±0.29
±1.48% 23.40 9.30±0.37

±3.98%

8.55 17.11 19.41±0.46
±2.37% 25.66 9.19±0.57

±6.20%

9.56 19.11 19.60±0.21
±1.07% 28.67 9.33±0.24

±2.57%

Table 1: Measured force amplitudes, F2 and F3, at the expected 2f and 3f
frequencies.
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