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1 Introduction

This document describes the effect of torques on the Newtonian Calibrator
injections during the third observing run [1]. In general gravitational calibrators
cause torques as well as forces on the test mass. These torques can couple into
the strain read out and must be taken into accounted for.

These calculations are only valid for the LIGO NCal during O3
[1]. Both the NCal geometry and the beam offset may be different
for future observing runs.

2 Geometry

The NCal was installed on the BSC pier closest to the ETMX test mass, as
shown in Figure 1. This ensured maximal SNR for the injections and was the
only pre-existing structure that was rigid enough to attach the rotor. One
downside to this location is that it induces relatively large torques on the test
mass.
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Figure 1: CAD rendering of the NCal rotor and test mass. [1]
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The primary way the torques couple into the injections is due to the main
interferometer beam spot being off center. Due to this off center beam spot,
angle changes about the y- and z-axis induce an arm length change in the
interferometer. This is then interpreted as force in the NCal analysis and skews
the results if not accounted for.
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Figure 2: Geometry of the main interferometer beam spot on the test mass.

3 FEA Model

We use the finite element model developed for the NCal force predictions [1]
to calculate the torques caused by the NCal about all three directions. We do
this calculation using the mean values of parameter in Table 1 of [1]. We do
not assess the uncertainties on the torques but it is expected be on the order
of the uncertainty of the force, ∼ 0.7 − 0.9%, and thus much smaller than the
uncertainty from the beam spot position.

Below are the amplitudes of the torques about the x, y, and z axes at 2f and
3f frequencies along with their phases relative to the force at that frequency.

2f
τx = 0.0138 fNm at 76.3◦

τy = 4.2203 fNm at 11.8◦

τz = 270.3682 fNm at 26.6◦

3f
τx = 0.0108 fNm at −30.4◦

τy = 2.5403 fNm at −51.4◦

τz = 158.4345 fNm at −32.1◦
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4 Apparent Force

Since there is no immediate way that torque about the x-axis (roll) can couple
to strain readout we ignore it and focus on the torque about the y-axis (pitch)
and z-axis (yaw).

Assuming that the test mass is a free mass:

θi(ω) = −τi(ω)

Iiω2
(1)

where θi is the angle about the i-axis, τi is the torque about the i-axis, Ii is the
moment of inertia of the test mass, and ω is the angular frequency of motion.
The arm length change due to this shift in angle follows:

x(ω) = bj tan(θi(ω)) ≈ bj θi(ω) (2)

where bj is the relevant beam offset. This is then interpreted as a force via:

F̃x(ω) = −Mω2x(ω) (3)

where M is the mass of the test mass. Plugging equation 1 and 2 in gives:

˜̃Fx(ω) =
Mbj
Ii

τi(ω) (4)

Since we have two directions that the test mass can torque this is actually
two separate equations:

F̃ z
x (ω) =

Mby
Iz

τz(ω) (5)

F̃ y
x (ω) =

Mbz
Iy

τy(ω) (6)

where by and bz are the beam offset in the y- and z-directions, τy and τz are
the torque about the y- and z-axis (pitch and yaw), and the superscripts on the
force denote which torque is causing the apparent x-direction force.

The mass of the test mass is M = 39.66 kg [1] and its moments about the
y and z axes are Iy = 0.419 kg m2 and Iz = 0.410 kg m2. The beam offsets
are estimated to be by = 13.2 mm and bz = −15.7 mm with uncertainty of
σb = 1 mm. Plugging these in gives:

Mbz
Iy

= −1.486 ± 0.095 m−1 (7)

Mby
Iz

= 1.277 ± 0.097 m−1 (8)

Using this value we get the following apparent forces:
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2f

F̃ y
x = −0.0063 ± 0.0004 pN at 11.8◦

F̃ z
x = 0.3454 ± 0.0262 pN at 26.6◦

3f

F̃ y
x = −0.0038 ± 0.0002 pN at −51.4◦

F̃ z
x = 0.2024 ± 0.0153 pN at −32.1◦

Adding the contributions from the torque about y and z together as complex
numbers, we get:

F̃ 2f
x = 0.3393 ± 0.0262 pN at 26.9◦ (9)

F̃ 3f
x = 0.1988 ± 0.0153 pN at − 31.7◦ (10)

5 Correcting the Observed Force

The proper way to account for the apparent force caused by the torques is to
correct each measured force by the values calculated in Equations 9 and 10.
However, the relative phase between the force and the torque must now be
taken into account.

F corr
x =

√
(F̃x)2 + (Fx)2 − 2F̃xFx cos(α) (11)

where F̃x is the apparent force caused by the torque, Fx is the measured force,
and α is the relative phase between the two.

The uncertainty can be calculated via:

σcorr =
1

F corr
x

√
(F̃x − Fx cos(α))2 σ̃2 + (Fx − F̃x cos(α))2 σ2 (12)

where σ and σ̃ are the uncertainties for Fx and F̃x, respectively.
The following table shows the uncorrected and corrected force amplitudes

and uncertainties for each injected frequency:

2f (Hz) Fx (pN) F corr
x (pN) 3f (Hz) Fx (pN) F corr

x (pN)

8.32 – 12.45 8.96±0.31
±3.46% 8.79±0.32

±3.61%

10.34 16.90±2.33
±13.79% 16.59±2.33

±14.05% 15.51 9.16±0.45
±4.91% 9.00±0.46

±5.07%

15.60 19.59±0.30
±1.48% 19.29±0.30

±1.57% 23.40 9.30±0.37
±3.98% 9.13±0.37

±4.10%

17.11 19.41±0.46
±2.37% 19.10±0.47

±2.44% 25.66 9.19±0.57
±6.20% 9.02±0.57

±6.36%

19.11 19.60±0.21
±1.07% 19.29±0.22

±1.12% 28.67 9.33±0.24
±2.57% 9.16±0.24

±2.66%
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